Skip to main content

Advertisement

Log in

Hydrogen-assisted synthesis of Ni-ZIF-derived nickel nanoparticle chains coated with nitrogen-doped graphitic carbon layers as efficient electrocatalysts for non-enzymatic glucose detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chains of nickel nanoparticles coated with few nitrogen-doped graphitic carbon layers (Ni@NC) are synthesized by hydrogen-assisted pyrolysis of Ni-ZIF. Hydrogen and temperature can play key roles in the formation of oriented Ni@NC nanoparticle chains, and carbon shells can protect Ni nanoparticles from external oxidation and aggregations. Under the optimized potential (0.60 V vs. Ag/AgCl), the Ni@NC7H nanoparticle chains obtained at 700 °C under H2/Ar atmosphere (Ni@NC7H) demonstrate outstanding performances, such as high sensitivity of 1.44 mA mM−1 cm−2 (RSD = 1.0%), low detection limit of 0.34 μM (S/N = 3), broad linear range from 1 μM to 1.81 mM, and excellent application potential in artificial sweat and human serum. Therefore, the findings above indicate that this study will provide a general methodology for the synthesis of chains-like core–shell nanoparticle electrocatalysts for non-enzymatic glucose detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adeel M, Rahman MM, Caligiuri I et al (2020) Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 165:112331. https://doi.org/10.1016/j.bios.2020.112331

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Zhang Y, Zhu H et al (2019) Functionalization of the support material based on N-doped carbon-reduced graphene oxide and its influence on the non-enzymatic detection of glucose. J Alloys Compd 780:98–106. https://doi.org/10.1016/j.jallcom.2018.11.368

    Article  CAS  Google Scholar 

  3. Brothers MC, DeBrosse M, Grigsby CC et al (2019) Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms. Acc Chem Res 52:297–306. https://doi.org/10.1021/acs.accounts.8b00555

    Article  CAS  PubMed  Google Scholar 

  4. Zheng L, Liu Y, Zhang C (2021) A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sens Actuators, B 343:130131. https://doi.org/10.1016/j.snb.2021.130131

    Article  CAS  Google Scholar 

  5. Kim J, Campbell AS, de Ávila BEF, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406. https://doi.org/10.1038/s41587-019-0045-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng S, DelaCruz S, Chen C et al (2019) Hierarchical Co3O4/CuO nanorod array supported on carbon cloth for highly sensitive non-enzymatic glucose biosensing. Sens Actuators, B 298:126860. https://doi.org/10.1016/j.snb.2019.126860

    Article  CAS  Google Scholar 

  7. Liao QL, Jiang H, Zhang XW et al (2019) A single nanowire sensor for intracellular glucose detection. Nanoscale 11:10702–10708. https://doi.org/10.1039/c9nr01997a

    Article  CAS  PubMed  Google Scholar 

  8. Lu M, Deng Y, Li Y et al (2020) Core-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Anal Chim Acta 1110:35–43. https://doi.org/10.1016/j.aca.2020.02.023

    Article  CAS  PubMed  Google Scholar 

  9. Mao X, Zhang C (2022) A microfluidic cloth-based photoelectrochemical analytical device for the detection of glucose in saliva. Talanta 238:123052. https://doi.org/10.1016/j.talanta.2021.123052

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Liu D, Cao G et al (2019) In situ synthesis of a sandwich-like graphene@ZIF-67 heterostructure for highly sensitive nonenzymatic glucose sensing in human serums. ACS Appl Mater Interfaces 11:9374–9384. https://doi.org/10.1021/acsami.8b22478

    Article  CAS  PubMed  Google Scholar 

  11. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  12. Kumar R (2020) NiCo2O4 nano-/microstructures as high-performance biosensors: a review. Nano-Micro Lett 12:122. https://doi.org/10.1007/s40820-020-00462-w

    Article  CAS  Google Scholar 

  13. Zhang Y, He Z, Dong Q et al (2022) 3D CoxP@NiCo-LDH heteronanosheet array: as a high sensitivity sensor for glucose. Microchem J 172:106923. https://doi.org/10.1016/j.microc.2021.106923

    Article  CAS  Google Scholar 

  14. Zhao S, Wang Y, Dong J et al (2016) Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1:1–10. https://doi.org/10.1038/nenergy.2016.184

    Article  CAS  Google Scholar 

  15. Wang Y, Liu B, Shen X et al (2021) Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv Energy Mater 11:2003759. https://doi.org/10.1002/aenm.202003759

    Article  CAS  Google Scholar 

  16. Kempahanumakkagari S, Vellingiri K, Deep A et al (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  17. Li S, Lin J, Xiong W et al (2021) Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev 438:213872. https://doi.org/10.1016/j.ccr.2021.213872

    Article  CAS  Google Scholar 

  18. Zhao L, Wei Q, Zhang L et al (2021) NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane. Renew Energy 173:273–282. https://doi.org/10.1016/j.renene.2021.03.100

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu Y-Q, Bai Y et al (2020) Confinement preparation of hierarchical NiO-N-doped carbon@reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose. Sens Actuators, B 309:127779. https://doi.org/10.1016/j.snb.2020.127779

    Article  CAS  Google Scholar 

  20. Oh S, Lee S, Oh M (2020) Zeolitic imidazolate framework-based composite incorporated with well-dispersed CoNi nanoparticles for efficient catalytic reduction reaction. ACS Appl Mater Interfaces 12:18625–18633. https://doi.org/10.1021/acsami.0c03756

    Article  CAS  PubMed  Google Scholar 

  21. Li R, Ren X, Feng X et al (2014) A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. Chem Commun 50:6894. https://doi.org/10.1039/c4cc01087f

    Article  CAS  Google Scholar 

  22. Choi CH, Choi WS, Kasian O et al (2017) Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew Chemie Int Ed 56:8809–8812. https://doi.org/10.1002/anie.201704356

    Article  CAS  Google Scholar 

  23. Liu P, Zhang Y, Yan J et al (2019) Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 368:285–298. https://doi.org/10.1016/j.cej.2019.02.193

    Article  CAS  Google Scholar 

  24. Xia BY, Yan Y, Li N et al (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006. https://doi.org/10.1038/nenergy.2015.6

    Article  CAS  Google Scholar 

  25. Ma Y, Dichiara AB, He D et al (2016) Control of product nature and morphology by adjusting the hydrogen content in a continuous chemical vapor deposition process for carbon nanotube synthesis. Carbon 107:171–179. https://doi.org/10.1016/j.carbon.2016.05.060

    Article  CAS  Google Scholar 

  26. Lu W, Jian M, Wang Q et al (2019) Hollow core-sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale 11:11856–11863. https://doi.org/10.1039/c9nr01791g

    Article  CAS  PubMed  Google Scholar 

  27. Chen D, Yu J, Cui Z et al (2020) Hierarchical architecture derived from two-dimensional zeolitic imidazolate frameworks as an efficient metal-based bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Electrochim Acta 331:135394. https://doi.org/10.1016/j.electacta.2019.135394

    Article  CAS  Google Scholar 

  28. Tsai C-W, Kroon RE, Swart HC et al (2019) Photoluminescence of metal-imidazolate complexes with Cd(II), Zn(II), Co(II) and Ni(II) cation nodes and 2-methylimidazole organic linker. J Lumin 207:454–459. https://doi.org/10.1016/j.jlumin.2018.11.026

    Article  CAS  Google Scholar 

  29. Zhang J, Zhang M, Qiu L et al (2019) Three-dimensional interconnected core–shell networks with Ni(Fe)OOH and M-N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn–air batteries. J Mater Chem A 7:19045–19059. https://doi.org/10.1039/C9TA06852J

    Article  CAS  Google Scholar 

  30. Chen D, Li G, Chen X et al (2021) Developing nitrogen and Co/Fe/Ni multi-doped carbon nanotubes as high-performance bifunctional catalyst for rechargeable zinc-air battery. J Colloid Interface Sci 593:204–213. https://doi.org/10.1016/j.jcis.2021.02.115

    Article  CAS  PubMed  Google Scholar 

  31. Fu Z, Hu J, Hu W et al (2018) Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056. https://doi.org/10.1016/j.apsusc.2018.02.114

    Article  CAS  Google Scholar 

  32. Perazzolo V, Durante C, Pilot R et al (2015) Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95:949–963. https://doi.org/10.1016/j.carbon.2015.09.002

    Article  CAS  Google Scholar 

  33. Cao F, Zhao M, Yu Y et al (2016) Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc 138:6924–6927. https://doi.org/10.1021/jacs.6b02540

    Article  CAS  PubMed  Google Scholar 

  34. Sheng ZH, Shao L, Chen JJ et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  PubMed  Google Scholar 

  35. Shu Y, Yan Y, Chen J et al (2017) Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces 9:22342–22349. https://doi.org/10.1021/acsami.7b07501

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Ye C, Li X et al (2018) A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett 10:28. https://doi.org/10.1007/s40820-017-0178-9

    Article  CAS  Google Scholar 

  37. Lavanya N, Leonardi SG, Marini S et al (2020) MgNi2O3 nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone. J Alloys Compd 817:152787. https://doi.org/10.1016/j.jallcom.2019.152787

    Article  CAS  Google Scholar 

  38. Unmüssig T, Weltin A, Urban S et al (2018) Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures. J Electroanal Chem 816:215–222. https://doi.org/10.1016/j.jelechem.2018.03.061

    Article  CAS  Google Scholar 

  39. Ezzati M, Shahrokhian S, Hosseini H (2020) In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms. ACS Sustain Chem Eng 8:14340–14352. https://doi.org/10.1021/acssuschemeng.0c03806

    Article  CAS  Google Scholar 

  40. Pu X, Zhao D, Fu C et al (2021) Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chemie Int Ed 60:21310–21318. https://doi.org/10.1002/anie.202104167

    Article  CAS  Google Scholar 

  41. Sun S, Shi N, Liao X et al (2020) Facile synthesis of CuO/Ni(OH)2 on carbon cloth for non-enzymatic glucose sensing. Appl Surf Sci 529:147067. https://doi.org/10.1016/j.apsusc.2020.147067

    Article  CAS  Google Scholar 

  42. Wang Q, Huang X, Zhao ZL et al (2020) Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J Am Chem Soc 142:7425–7433. https://doi.org/10.1021/jacs.9b12642

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, He X, Gao J et al (2019) Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing. Sens Actuators, B 299:126945. https://doi.org/10.1016/j.snb.2019.126945

    Article  CAS  Google Scholar 

  44. Ding J, Li X, Zhou L et al (2020) Electrodeposition of nickel nanostructures using silica nanochannels as confinement for low-fouling enzyme-free glucose detection. J Mater Chem B 8:3616–3622. https://doi.org/10.1039/c9tb02472g

    Article  CAS  PubMed  Google Scholar 

  45. Zhan T, Yin H, Zhu J et al (2019) Ni3(PO4)2 nanoparticles decorated carbon sphere composites for enhanced non-enzymatic glucose sensing. J Alloys Compd 786:18–26. https://doi.org/10.1016/j.jallcom.2019.01.304

    Article  CAS  Google Scholar 

  46. Meng A, Yuan X, Li Z et al (2019) Direct growth of 3D porous (Ni-Co)3S4 nanosheets arrays on rGO-PEDOT hybrid film for high performance non-enzymatic glucose sensing. Sens Actuators, B 291:9–16. https://doi.org/10.1016/j.snb.2019.04.042

    Article  CAS  Google Scholar 

  47. Wang F, Feng Y, He S et al (2020) Nickel nanoparticles-loaded three-dimensional porous magnetic graphene-like material for non-enzymatic glucose sensing. Microchem J 155:104748. https://doi.org/10.1016/j.microc.2020.104748

    Article  CAS  Google Scholar 

  48. Rahsepar M, Foroughi F, Kim H (2019) A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value. Sens Actuators, B 282:322–330. https://doi.org/10.1016/j.snb.2018.11.078

    Article  CAS  Google Scholar 

  49. Liu W, Zhao X, Guo Q et al (2022) Preparation of electrochemical sensor based on the novel NiO quantum dots modified Cu/Cu2O 3D hybrid electrode and its application for non-enzymatic detection of glucose in serums and beverages. J Alloys Compd 895:162573. https://doi.org/10.1016/j.jallcom.2021.162573

    Article  CAS  Google Scholar 

  50. Li Y, Deng D, Wang H et al (2022) Controlled synthesis of Cu-Sn alloy nanosheet arrays on carbon fiber paper for self-supported nonenzymatic glucose sensing. Anal Chim Acta 1190:339249. https://doi.org/10.1016/j.aca.2021.339249

    Article  CAS  PubMed  Google Scholar 

  51. Gupta P, Gupta VK, Huseinov A et al (2021) Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. Sens Actuators, B 348:130688. https://doi.org/10.1016/j.snb.2021.130688

    Article  CAS  Google Scholar 

  52. Chakraborty P, Dhar S, Deka N et al (2020) Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens Actuators, B 302:127134. https://doi.org/10.1016/j.snb.2019.127134

    Article  CAS  Google Scholar 

  53. Su Y, Luo B, Zhang JZ (2016) Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing. Anal Chem 88:1617–1624. https://doi.org/10.1021/acs.analchem.5b03396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (21776147, 21606140, 61604086, 21905153, and 51472174), the International Science & Technology Cooperation Program of China (2014DFA60150), the Department of Science and Technology of Shandong Province (ZR2018BB066 and 2016GGX104010), the Qingdao Municipal Science and Technology Bureau (19-6-1-91-nsh), and the Department of Education of Shandong Province (J16LA14 and J17KA013). Also, L. F. Dong thanks financial support from the Malmstrom Endowed Fund at Hamline University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjie Chen, Liyan Yu or Lifeng Dong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xie, G., Gong, C. et al. Hydrogen-assisted synthesis of Ni-ZIF-derived nickel nanoparticle chains coated with nitrogen-doped graphitic carbon layers as efficient electrocatalysts for non-enzymatic glucose detection. Microchim Acta 189, 80 (2022). https://doi.org/10.1007/s00604-022-05172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05172-1

Keywords

Navigation