Skip to main content
Log in

Controllable bisubstrate multi-colorimetric assay based on peroxidase-like nanozyme and complementary colorharmonic principle for semi-quantitative detection of H2O2 with the naked eye

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Naked-eye semi-quantitative (NEQ) assays should exhibit vivid color variations and one-to-one correspondence between the analyte concentrations and the color display. Herein, we report a bisubstrate multi-colorimetric system, constituted by 3,3′,5,5′-tetramethylbenzidine (TMB) and dopamine (DA), which carries out a controllable NEQ assay based on the complementary colorharmonic principle. This bisubstrate system is a universal threshold NEQ assay with tunable sensitivity and detection window depending on the H2O2 concentration. The peroxidase-like activity of PEG@Fe3O4 NPs was used to catalyze the oxidations of TMB and DA by H2O2 to the colored products. On the basis of UV–vis spectra data, it was speculated that the oxidation product of TMB (TMB·+) could oxidize DA in this system. The concentration of DA controls the consumption of oxidant (H2O2) and the oxidation of TMB. By controlling the molar ratio of TMB to DA, the bisubstrate system precisely showed multicolor displays (e.g., three-color display: orange, gray, and blue) at submillimolar and millimolar concentrations of H2O2. The detection limit and sensitivity for H2O2 were 0.4 mM and 0.1 mM, respectively. Next, the system was applied to the threshold detection of hypoglycemia (orange), normal (gray), and hyperglycemia (blue) in spiked samples on both gel- and paper-based test strips. Digitalized colorimetric results using the red–green–blue (RGB) analysis with smartphone application were achieved. This work provides a new strategy of multi-colorimetric assay that takes advantages of controllability, threshold detection, vivid color variations, and reproducibility (CVs were 1.1–2.1%), which could be potentially useful for in-field and point-of-care applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Ma XM, He S, Qiu B, Luo F, Guo LH, Lin ZY (2019) Noble metal nanoparticle-based multicolor immunoassays: an approach toward visual quantification of the analytes with the naked eye. ACS Sensors 4:782–791. https://doi.org/10.1021/acssensors.9b00438

    Article  CAS  PubMed  Google Scholar 

  2. Tang LH, Li JH (2017) Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sensors 2:857–875. https://doi.org/10.1021/acssensors.7b00282

    Article  CAS  PubMed  Google Scholar 

  3. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081. https://doi.org/10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  4. Ma XM, Chen ZT, Kannan P, Lin ZY, Qiu B, Guo LH (2016) Gold nanorods as colorful chromogenic substrates for semiquantitative detection of nucleic acids, proteins, and small molecules with the naked eye. Anal Chem 88:3227–3234. https://doi.org/10.1021/acs.analchem.5b04621

    Article  CAS  PubMed  Google Scholar 

  5. Chen ZT, Lin Y, Ma XM, Guo LH, Qiu B, Chen GN, Lin ZY (2017) Multicolor biosensor for fish freshness assessment with the naked eye. Sens Actuator B-Chem 252:201–208. https://doi.org/10.1016/j.snb.2017.06.007

    Article  CAS  Google Scholar 

  6. Guo YH, Wu J, Li J, Ju HX (2016) A plasmonic colorimetric strategy for biosensing through enzyme guided growth of silver nanoparticles on gold nanostars. Biosens Bioelectron 78:267–273. https://doi.org/10.1016/j.bios.2015.11.056

    Article  CAS  PubMed  Google Scholar 

  7. Xu SH, Ouyang WJ, Xie PS, Lin Y, Qin B, Lin ZY, Chen GN, Guo LH (2017) Highly uniform gold nanobipyramids for ultrasensitive colorimetric detection of influenza virus. Anal Chem 89:1617–1623. https://doi.org/10.1021/acs.analchem.6b03711

    Article  CAS  PubMed  Google Scholar 

  8. Chen P, Liu XH, Goyal G, Tran NT, Ho JCS, Wang Y, Aili D, Liedberg B (2018) Nanoplasmonic sensing from the human vision perspective. Anal Chem 90:4916–4924. https://doi.org/10.1021/acs.analchem.8b00597

    Article  CAS  PubMed  Google Scholar 

  9. Cooper SS (1941) The mixed indicator bromocresol green-methyl red for carbonates in water. Ind Eng Chem Anal Ed 13:0466–0470. https://doi.org/10.1021/i560095a011

    Article  CAS  Google Scholar 

  10. MacAdam DL (1938) Photometric relationships between complementary colors. J Opt Soc Am 28:103–111. https://doi.org/10.1364/josa.28.000103

    Article  Google Scholar 

  11. Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ (2018) Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. Trac-Trends Anal Chem 105:218–224. https://doi.org/10.1016/j.trac.2018.05.012

    Article  CAS  Google Scholar 

  12. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. https://doi.org/10.1039/c3cs35486e

    Article  CAS  PubMed  Google Scholar 

  13. Wu JJX, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (ii). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  PubMed  Google Scholar 

  14. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  15. Tracey CT, Torlopov MA, Martakov IS, Vdovichenko EA, Zhukov M, Krivoshapkin PV, Mikhaylov VI, Krivoshapkina EF (2020) Hybrid cellulose nanocrystal/magnetite glucose biosensors. Carbohydr Polym 247:116704. https://doi.org/10.1016/j.carbpol.2020.116704

    Article  CAS  PubMed  Google Scholar 

  16. Duan DM, Fan KL, Zhang DX, Tan SG, Liang MF, Liu Y, Zhang JL, Zhang PH, Liu W, Qiu XG, Kobinger GP, Gao GF, Yan XY (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141. https://doi.org/10.1016/j.bios.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  17. Zakharzhevskii M, Drozdov AS, Kolchanov DS, Shkodenko L, Vinogradov VV (2020) Test-system for bacteria sensing based on peroxidase-like activity of inkjet-printed magnetite nanoparticles. Nanomaterials 10:313. https://doi.org/10.3390/nano10020313

    Article  CAS  PubMed Central  Google Scholar 

  18. Kip C, Akbay E, Gokcal B, Savas BO, Onur MA, Tuncel A (2020) Colorimetric determination of tumor cells via peroxidase-like activity of a cell internalizable nanozyme: hyaluronic acid attached-silica microspheres containing accessible magnetite nanoparticles. Colloid Surface A 598:124812. https://doi.org/10.1016/j.colsurfa.2020.124812

    Article  CAS  Google Scholar 

  19. Zhang ZJ, Zhang XH, Liu BW, Liu JW (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139:5412–5419. https://doi.org/10.1021/jacs.7b00601

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Li S, Si YM, Zhang N, Sun ZZ, Wu H, Lin YH (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6:8107–8116. https://doi.org/10.1039/c4nr00983e

    Article  CAS  PubMed  Google Scholar 

  21. Chen WH, Vazquez-Gonzalez M, Kozell A, Cecconello A, Willner I (2018) Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme. Small 14:8. https://doi.org/10.1002/smll.201703149

    Article  CAS  Google Scholar 

  22. Purcell GV, Behenna DB, Walsh PR (1979) Evaluation of the BMC glucose oxidase/peroxidase-4-aminophenazone-phenol procedure for glucose as adapted to the Technicon SMAC. Clin Chem 25:1844–1846

    Article  CAS  Google Scholar 

  23. Ye HH, Yang KK, Tao J, Liu YJ, Zhang Q, Habibi S, Nie ZH, Xia XH (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059. https://doi.org/10.1021/acsnano.6b08232

    Article  CAS  PubMed  Google Scholar 

  24. Childs RE, Bardsley WG (1975) Steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103. https://doi.org/10.1042/bj1450093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stefan L, Denat F, Monchaud D (2012) Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res 40:8759–8772. https://doi.org/10.1093/nar/gks581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenzidine: free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675

    Article  CAS  Google Scholar 

  27. Loynachan CN, Soleimany AP, Dudani JS, Lin YY, Najer A, Bekdemir A, Chen Q, Bhatia SN, Stevens MM (2019) Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol 14:883–890. https://doi.org/10.1038/s41565-019-0527-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205. https://doi.org/10.1021/ja026501x

    Article  CAS  PubMed  Google Scholar 

  29. Fu Y, Li XD, Chen HD, Wang ZX, Yang WS, Zhang HM (2019) CXC chemokine receptor 4 antagonist functionalized renal clearable manganese-doped iron oxide nanoparticles for active-tumor-targeting magnetic resonance imaging-guided bio-photothermal therapy. ACS Appl Bio Mater 2:3613–3621. https://doi.org/10.1021/acsabm.9b00475

    Article  CAS  PubMed  Google Scholar 

  30. Jiang B, Duan DM, Gao LZ, Zhou MJ, Fan KL, Tang Y, Xi JQ, Bi YH, Tong Z, Gao GF, Xie N, Tang A, Nie GH, Liang MM, Yan XY (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13:1506–1520. https://doi.org/10.1038/s41596-018-0001-1

    Article  CAS  PubMed  Google Scholar 

  31. Wei H, Wang EK (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254. https://doi.org/10.1021/ac702203f

    Article  CAS  PubMed  Google Scholar 

  32. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Edit 48:2308–2312. https://doi.org/10.1002/anie.200805279

    Article  CAS  Google Scholar 

  33. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605. https://doi.org/10.1074/jbc.M610893200

    Article  CAS  PubMed  Google Scholar 

  34. Jang GG, Roper DK (2011) Balancing redox activity allowing spectrophotometric detection of Au(I) using tetramethylbenzidine dihydrochloride. Anal Chem 83:1836–1842. https://doi.org/10.1021/ac102668q

    Article  CAS  PubMed  Google Scholar 

  35. Pham AN, Waite TD (2014) Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics. J Inorg Biochem 137:74–84. https://doi.org/10.1016/j.jinorgbio.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  36. Borsook H, Keighley G (1933) Oxidation-reduction potential of ascorbic acid (Vitamin C). Proc Natl Acad Sci U S A 19:875–878. https://doi.org/10.1073/pnas.19.9.875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simic MG, Jovanovic SV (1989) Antioxidation mechanisms of uric acid. J Am Chem Soc 111:5778–5782. https://doi.org/10.1021/ja00197a042

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61901438) and Science and Technology Developing Foundation of Jilin Province (Grant No. 20200404192YY).

Author information

Authors and Affiliations

Authors

Contributions

Min Su: conceptualization, methodology, investigation, data analysis, writing—original draft. Hongda Chen: resources. Hua Zhang: funding acquisition, resources. Zhenxin Wang: conceptualization, writing—review and editing, supervision, resources.

Corresponding authors

Correspondence to Min Su or Zhenxin Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

604_2022_5169_MOESM1_ESM.docx

Reagents and apparatus, additional detailed experiment procedures, HRTEM image, EDS analysis and magnetic measurement of as-prepared Fe3O4 NPs, pH optimization, steady-state kinetic assay of PEG@Fe3O4 NPs, time evolution UV–vis absorption spectra of bisubstrate systems, time-dependent colorimetric results of the TMB system, repeatability test of the bisubstrate multi-colorimetric assay, analytical results of the test strips by smartphone app. (DOCX 23.2 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Chen, H., Zhang, H. et al. Controllable bisubstrate multi-colorimetric assay based on peroxidase-like nanozyme and complementary colorharmonic principle for semi-quantitative detection of H2O2 with the naked eye. Microchim Acta 189, 81 (2022). https://doi.org/10.1007/s00604-022-05169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05169-w

Keywords

Navigation