Skip to main content
Log in

An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An immunoassay strategy has been developed based on nanomotor-assisted electrochemical measurements for simple and sensitive detection of immunoglobulin (IgG). The self-propelled Fe3O4@SiO2/Pt nanomotors were designed to label primary antibodies IgG (nanomotor-label) for the “on-the-fly” binding of the immune-protein. The core shell Au@Ag nanocubes (Au@Ag NCs) were used as labels of secondary antibodies (Au@Ag NCs-Ab2) to amplify electrochemical signal related to antigen concentration derived from the oxidation of Ag. The self-propelled nanomotors autonomously move in the solution to cruise and capture IgG and Au@Ag NCs-Ab2, resulting in the self-assembly of sandwich immune-complex. Finally, the immune-complex with magnetism can be transferred and modified on the electrode for the detection of IgG via differential pulse voltammetry. The self-propelled motion of the nanomotor-label obviates common procedures for the self-assembly of sandwich immunosensors to achieve satisfactory analysis results. With advantages of automation and miniaturization, the strategy based on self-propelled nanomotor-labels explores an effective method for the simple and sensitive detection of immune-protein in biosensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang S, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S (2016) A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosens Bioelectron 77:1078–1085

    Article  CAS  Google Scholar 

  2. Barman SC, Zahed MA, Sharifuzzaman M, Ko SG, Yoon H, Nah JS, Xuan X, Park JY (2020) A polyallylamine anchored amine-rich laser-ablated graphene platform for facile and highly selective electrochemical IgG biomarker detection. Adv Funct Mater 30(14):1907297

    Article  CAS  Google Scholar 

  3. Liu L, Li Y, Tian L, Guo T, Cao W, Wei Q (2015) A label-free voltammetric immunoassay based on 3D-structured rGO-MWCNT-Pd for detection of human immunoglobulin G. Sens Actuators, B 211:170–176

    Article  CAS  Google Scholar 

  4. Wang N, Gao C, Han Y, Huang X, Xu Y, Cao X (2015) Detection of human immunoglobulin G by label-free electrochemical immunoassay modified with ultralong CuS nanowires. J Mater Chem B 3(16):3254–3259

    Article  CAS  Google Scholar 

  5. Wang L, Jia X, Zhou Y, Xie Q, Yao S (2010) Sandwich-type amperometric immunosensor for human immunoglobulin G using antibody-adsorbed Au/SiO2 nanoparticles. Microchim Acta 168(3):245–251

    Article  CAS  Google Scholar 

  6. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27(2):95–125

    Article  CAS  Google Scholar 

  7. Jiao L, Zhang L, Du W, Li H, Yang D, Zhu C (2019) Au@Pt nanodendrites enhanced multimodal enzyme-linked immunosorbent assay. Nanoscale 11(18):8798–8802

    Article  CAS  Google Scholar 

  8. Gao Y, Zhou Y, Chandrawati R (2019) Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl Nano Mater 3(1):1–21

    Article  CAS  Google Scholar 

  9. Cao L, Xiao H, Fang C, Zhao F, Chen Z (2020) Electrochemical immunosensor based on binary nanoparticles decorated rGO-TEPA as magnetic capture and Au@PtNPs as probe for CEA detection. Microchim Acta 187(10):584

    Article  CAS  Google Scholar 

  10. Shore A, Mazzochette Z, Mugweru A (2016) Mixed valence Mn, La, Sr-oxide based magnetic nanoparticles coated with silica nanoparticles for use in an electrochemical immunosensor for IgG. Microchim Acta 183(1):475–483

    Article  CAS  Google Scholar 

  11. Li N, Chen J, Luo M, Chen C, Ji X, He Z (2017) Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens Bioelectron 87:325–331

    Article  CAS  Google Scholar 

  12. Mayorga-Martinez CC, Pumera M (2020) Self-propelled tags for protein detection. Adv Funct Mater 30(6):1906449

    Article  CAS  Google Scholar 

  13. Wang H, Pumera M (2017) Emerging materials for the fabrication of micro/nanomotors. Nanoscale 9(6):2109–2116

    Article  CAS  Google Scholar 

  14. Moo JGS, Mayorga-Martinez CC, Wang H, Khezri B, Teo WZ, Pumera M (2017) Nano/microrobots meet electrochemistry. Adv Funct Mater 27(12):1604759

    Article  Google Scholar 

  15. Ma W, Wang K, Pan S, Wang H (2019) Iron-exchanged zeolite micromotors for enhanced degradation of organic pollutants. Langmuir 36(25):6924–6929

    Article  Google Scholar 

  16. Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Báez DF, Jodra A, Singh VV, Kaufmann K, Wang J (2016) Aptamer-modified graphene-based catalytic micromotors: Off-on fluorescent detection of ricin. ACS Sens 1(3):217–221

    Article  Google Scholar 

  17. Zheng S, Wang Y, Pan S, Ma E, Jin S, Jiao M, Wang W, Li J, Xu K, Wang H (2021) Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv Funct Mater 31(24):2100936

    Article  CAS  Google Scholar 

  18. Rojas D, Jurado-Sanchez B, Escarpa A (2016) “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal Chem 88(7):4153–4160

    Article  CAS  Google Scholar 

  19. Kong L, Rohaizad N, Nasir MZM, Guan J, Pumera M (2019) Micromotor-assisted human serum glucose biosensing. Anal Chem 91(9):5660–5666

    Article  CAS  Google Scholar 

  20. Ávila BE-F, Zhao M, Campuzano S, Ricci F, Pingarrón JM, Mascini M, Wang J (2017) Rapid micromotor-based naked-eye immunoassay. Talanta 167:651–657

    Article  Google Scholar 

  21. Wang K, Wang W, Pan S, Fu Y, Dong B, Wang H (2020) Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Appl Mater Today 19:100550

    Article  Google Scholar 

  22. Molinero-Fernández Á, Arruza L, López MÁ, Escarpa A (2020) On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens Bioelectron 158:112156

    Article  Google Scholar 

  23. Molinero-Fernández A, López MA, Escarpa A (2020) Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion. Anal Chem 92(7):5048–5054

    Article  Google Scholar 

  24. Wang J (2016) Self-propelled affinity biosensors: moving the receptor around the sample. Biosens Bioelectron 76:234–242

    Article  CAS  Google Scholar 

  25. Moreno-Guzman M, Jodra A, López M-A, Escarpa A (2015) Self-propelled enzyme-based motors for smart mobile electrochemical and optical biosensing. Anal Chem 87(24):12380–12386

    Article  CAS  Google Scholar 

  26. Habila MA, ALOthman ZA, El-Toni AM, Labis JP, Soylak M (2016) Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis. Talanta 154:539–547

    Article  CAS  Google Scholar 

  27. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29

    Article  CAS  Google Scholar 

  28. Zhang J, Zhai S, Li S, Xiao Z, Song Y, An Q, Tian G (2013) Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem Eng J 215–216:461–471

    Article  Google Scholar 

  29. Londono-Calderon A, Bahena D, Yacaman MJ (2016) Controlled synthesis of Au@AgAu yolk–shell cuboctahedra with well-defined facets. Langmuir 32(30):7572–7581

    Article  CAS  Google Scholar 

  30. Ma E, Wang K, Hu Z, Wang H (2021) Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics. J Colloid Interface Sci 603:685–694

    Article  CAS  Google Scholar 

  31. Li W, Wu X, Qin H, Zhao Z, Liu H (2016) Light-driven and light-guided microswimmers. Adv Funct Mater 26(18):3164–3171

    Article  CAS  Google Scholar 

  32. Ma E, Wang P, Yang Q, Yu H, Pei F, Zheng Y, Liu Q, Dong Y, Li Y (2020) Electrochemical immunosensors for sensitive detection of neuron-specific enolase based on small-size trimetallic Au@Pd^Pt nanocubes functionalized on ultrathin MnO2 nanosheets as signal labels. ACS Biomater Sci Eng 6(3):1418–1427

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (21905303) and the Fundamental Research Funds for the Central Universities (2020ZDPY0213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 KB)

Supplementary file2 (MP4 1706 KB)

Supplementary file3 (MP4 1201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, E., Wang, K. & Wang, H. An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Microchim Acta 189, 47 (2022). https://doi.org/10.1007/s00604-021-05158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05158-5

Keywords

Navigation