Skip to main content
Log in

A test strip electrochemical disposable by 3D MXA/AuNPs DNA-circuit for the detection of miRNAs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The simple and reliable detection of microRNAs is of great significance for studying the biological functions, molecular diagnosis, disease treatment and targeted drug therapy of microRNA. In this study, we introduced a novel Ti3C2Tx (MXene) aerogels (denoted as MXA) composite gold nano-particles (AuNPs)-modified disposable carbon fiber paper (CFP) electrode for the label-free and sensitive detection of miRNA-155. Firstly, in the presence of MXene, graphene oxide (GO) and ethylenediamine (EDA), the 3D MXene hydrogel was formed by self-assembly method, and then adding the freeze-dried 3D MXA dropwise to CFP. Subsequently, electrodepositing AuNPs on the CFP/MXA was done to construct a 3D disposable DNA-circuit test strip with excellent interface. Under the optimum experimental conditions, the detection limit of 3D disposable DNA circuit strip for miRNA-155 was 136 aM (S/N = 3). The CFP/MXA/AuNPs (CMA) electrode also has a wide dynamic range (20 fM to 0.4 μM), with a span of 4 orders of magnitude. Notably, we also tested the practicality of the sensor in 8 clinical samples. The technological innovations in the detection and quantification of microRNA in this work may be helpful to the study new aspects of microRNA biology and the development of diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global cancer statistics 2020 (2021) GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    PubMed  Google Scholar 

  2. Weber JA, Baxter DH, Zhang SL, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The MicroRNA Spectrum in 12 Body Fluids. Clin Chem 56:1733–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng YQ, Dong LJ, Zhang JY, Zhao YQ, Li ZP (2018) Recent advances in microRNA detection. Analyst 143:1758–1774

    CAS  PubMed  Google Scholar 

  5. Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L, Wang X, Ma J, Chen L (2021) Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosens Bioelectron 174:112825

    CAS  PubMed  Google Scholar 

  6. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu L, Stasheuski AS, Wegman DW, Wu N, Yang BB, Hayder H, Peng C, Liu SK, Yousef GM, Krylov SN (2017) Accurate MicroRNA Analysis in Crude Cell Lysate by Capillary Electrophoresis-Based Hybridization Assay in Comparison with Quantitative Reverse Transcription-Polymerase Chain Reaction. Anal Chem 89:4743–4748

    CAS  PubMed  Google Scholar 

  8. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  9. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  10. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    CAS  PubMed  Google Scholar 

  11. Wang X, Yu S, Wang J, Yu J, Arabi M, Fu L, Li B, Li J, Chen L (2020) Fluorescent nanosensor designing via hybrid of carbon dots and post-imprinted polymers for the detection of ovalbumin. Talanta 211:120727

    CAS  PubMed  Google Scholar 

  12. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular Imprinting: Green Perspectives and Strategies. Adv Mater 33:e2100543

    PubMed  Google Scholar 

  13. Pena JTG, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M, Tuschl T (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6:139–141

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508–1514

    CAS  PubMed  Google Scholar 

  15. Le Quesne J, Jones J, Warren J, Dawson SJ, Ali HR, Bardwell H, Blows F, Pharoah P, Caldas C (2012) Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridization analysis of micro-RNA expression in arrays of archival tumour tissue. J Pathol 227:306–314

    CAS  PubMed  Google Scholar 

  16. Hermansen SK, Dahlrot RH, Nielsen BS, Hansen S, Kristensen BW (2013) MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neuro-Oncol 111:71–81

    CAS  Google Scholar 

  17. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    CAS  PubMed  Google Scholar 

  18. Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan Y, Chen XT, Trigg AD, Tung CH, Kong JM, Gao ZQ (2007) Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc 129:5437–5443

    CAS  PubMed  Google Scholar 

  20. Cissell KA, Rahimi Y, Shrestha S, Hunt EA, Deo SK (2008) Bioluminescence-based detection of MicroRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325

    CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhang CY (2012) Sensitive Detection of microRNA with Isothermal Amplification and a Single-Quantum-Dot-Based Nanosensor. Anal Chem 84:224–231

    CAS  PubMed  Google Scholar 

  22. Jia HX, Li ZP, Liu CH, Cheng YQ (2010) Ultrasensitive Detection of microRNAs by Exponential Isothermal Amplification. Angew Chem Int Ed 49:5498–5501

    CAS  Google Scholar 

  23. Lee CP, Lai KY, Lin CA, Li CT, Ho KC, Wu CI, Lau SP, He JH (2017) A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy 36:260–267

    CAS  Google Scholar 

  24. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical Detection for Paper-Based Microfluidics. Anal Chem 81:5821–5826

    CAS  PubMed  Google Scholar 

  25. Sharma A, Kaushal R (2021) Experimental and Statistical Analysis of Relative Humidity and Temperature of Moist Air in a Flat Plate Multi-Layer Desiccant Cooling System. Energy Sources A Recov Util Environ Effects 1–19. https://doi.org/10.1080/15567036.2021.1915434

  26. Nasalapure AV, Chalannavar RK, Kasai DR, Reddy KR, Raghu AV (2021) Novel polymeric hydrogel composites: Synthesis, physicochemical, mechanical and biocompatible properties. Nano Express 2:030003 ((030013pp))

    Google Scholar 

  27. Madhavi J, Prasad V, Reddy KR, Venkata Reddy C, Raghu AV (2021) Facile synthesis of Ni-doped ZnS-CdS composite and their magnetic and photoluminescence properties. Journal of Environmental Chemical Engineering 9. https://doi.org/10.1016/j.jece.2021.106335

  28. Karthik KV, Raghu AV, Reddy KR, Ravishankar R, Sangeeta M, Shetti NP, Reddy CV (2021) Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287:132081

    PubMed  Google Scholar 

  29. Srinivas M, Venkata RCh, Kakarla RR, Shetti NP, Reddy MS, Anjanapura VR (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Express 6(12):125502. https://doi.org/10.1088/2053-1591/ab5328

    Article  CAS  Google Scholar 

  30. Shwetharani R, Chandan HR, Sakar M, Balakrishna GR, Reddy KR, Raghu AV (2020) Photocatalytic semiconductor thin films for hydrogen production and environmental applications. Int J Hydrogen Energy 45:18289–18308

    CAS  Google Scholar 

  31. Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV (2020) Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci 281:102178

    CAS  PubMed  Google Scholar 

  32. Kannan K, Radhika D, Nesaraj AS, Kumar Sadasivuni K, Reddy KR, Kasai D, Raghu AV (2020) Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater Sci Energy Technol 3:853–861

    CAS  Google Scholar 

  33. Jonnalagadda M, Prasad VB, Raghu AV (2021) Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J Mol Struct 1230. https://doi.org/10.1016/j.molstruc.2021.129875

  34. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv Mater 26:992–1005

    CAS  PubMed  Google Scholar 

  35. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 341:1502–1505

    CAS  PubMed  Google Scholar 

  36. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2. https://www.nature.com/articles/natrevmats201698

  37. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    CAS  PubMed  Google Scholar 

  38. Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT (2016) Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv Funct Mater 26:4162–4168

    CAS  Google Scholar 

  39. Ran JR, Gao GP, Li FT, Ma TY, Du AJ, Qiao SZ (2017) Ti3C2 MXene co-catalyst on metal sulfide photoabsorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8. https://www.nature.com/articles/ncomms13907

  40. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 12:986–993

    CAS  PubMed  Google Scholar 

  41. Shang TX, Lin ZF, Qi CS, Liu XC, Li P, Tao Y, Wu ZT, Li DW, Simon P, Yang QH (2019) 3D Macroscopic Architectures from Self-Assembled MXene Hydrogels. Adv Funct Mater 29. https://doi.org/10.1002/adfm.201903960

  42. Loh KJ, Azhari F (2012) Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology. Jom-Us 64:793–801

    Google Scholar 

  43. Degliangeli F, Pompa PP, Fiammengo R (2014) Nanotechnology-Based Strategies for the Detection and Quantification of MicroRNA. Chem Eur J 20:9476–9492

    CAS  PubMed  Google Scholar 

  44. Zhang HX, Wang ZH, Zhang QX, Wang F, Liu Y (2019) Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron 124:184–190

    PubMed  Google Scholar 

  45. Han JH, Lee E, Park S, Chang R, Chung TD (2010) Effect of Nanoporous Structure on Enhanced Electrochemical Reaction. J Phys Chem C 114:9546–9553

    CAS  Google Scholar 

  46. Cho SK, Jung GY, Choi KH, Lee J, Yoo J, Kwak SK, Lee SY (2019) Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles. Nano Lett 19:5879–5884

    CAS  PubMed  Google Scholar 

  47. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Adv Funct Mater 27. https://doi.org/10.1002/adfm.201701264

  48. Hu MM, Hu T, Li ZJ, Yang Y, Cheng RF, Yang JX, Cui C, Wang XH (2018) Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2Tx MXene (Retracted article. See, vol. 15, pp. 7835, 2021). ACS Nano 12:3578–3586

    CAS  PubMed  Google Scholar 

  49. Yang QY, Xu Z, Fang B, Huang TQ, Cai SY, Chen H, Liu YJ, Gopalsamy K, Gao WW, Gao C (2017) MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem A 5:22113–22119

    CAS  Google Scholar 

  50. Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH (2017) Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem Eng J 308:1174–1184

    CAS  Google Scholar 

  51. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science 323:112–116

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng X, Xu M, Zhu J, Yin H, Ai S (2012) Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta 71:233–238

    CAS  Google Scholar 

  53. Dong HF, Lei JP, Ding L, Wen YQ, Ju HX, Zhang XJ (2013) MicroRNA: Function, Detection, and Bioanalysis. Chem Rev 113:6207–6233

    CAS  PubMed  Google Scholar 

  54. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: New Biomarkers for Diagnosis Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 5:1122–1143

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NO. 81772290 and 81271930), National Facility for Translational Medicine (Shanghai) Open Project Fund (TMSK-2021-113), Fundamental Research Funds for the Central Universities (2019CDYGZD007), Graduate Scientific Research and Innovation Foundation of Chongqing, China (2020CDCGJ014,CYB20070), Chongqing Graduate Tutor Team Construction Project and Analytical and Testing Center of Chongqing University for (SEM/XPS) and the sharing fund of Chongqing University's large equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Yang, Danqun Huo or Changjun Hou.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wen, L., Wang, X. et al. A test strip electrochemical disposable by 3D MXA/AuNPs DNA-circuit for the detection of miRNAs. Microchim Acta 189, 50 (2022). https://doi.org/10.1007/s00604-021-05150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05150-z

Keywords

Navigation