Skip to main content
Log in

Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), found in blood and body fluids, have emerged as potential non-invasive biomarkers for disease and injury. miRNAs are quantitatively evaluated using typical RNA analysis methods such as the quantitative reverse transcription polymerase chain reaction, microarrays, and Northern blot, all of which require complex procedures and expensive reagents. To utilize miRNAs as practical biomarkers, it will be helpful to develop simple and user-friendly sensors. In this study, a paper-based miRNA sensor was developed by combining two methods: (1) target-recycled DNAzyme (Dz) amplification and (2) graphene oxide-assisted Dz blotting on paper. The Dz spots on paper caused a miRNA-dependent color change in presence of colorimetric reagents and facilitated the quantification of absolute amount of the target miRNA, irrespective of the volume, with high reproducibility. This approach is technologically straightforward and enables quantification of as low as 7.75 fmol miRNA using a portable smartphone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

ABTS :

2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

Dz :

DNAzyme

FAM-Dz :

Fluorescein-labeled Dz strand

FRET :

Fluorescence resonance energy transfer

G :

Guanine

GO :

Graphene oxide

LOD :

Limit of detection

miR-122 :

MiRNA-122

miRNA :

MicroRNA

S :

Slope

SEM :

Standard error of the mean

SD :

Standard deviation

ssDNA :

Single-stranded DNA

Sup :

Supernatant

TMSD :

Toehold-mediated strand displacement

References

  1. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. https://doi.org/10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  2. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780. https://doi.org/10.1038/sj.bjc.6603023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187. https://doi.org/10.1038/sj.onc.1209912

    Article  CAS  PubMed  Google Scholar 

  4. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. https://doi.org/10.1038/nrm2868

    Article  CAS  PubMed  Google Scholar 

  5. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  6. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469. https://doi.org/10.1016/j.molmed.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  7. Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int 15:38. https://doi.org/10.1186/s12935-015-0185-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. https://doi.org/10.1146/annurev.micro.112408.134243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jopling C (2012) Liver-specific microRNA-122: biogenesis and function. RNA Biol 9:137–142. https://doi.org/10.4161/rna.18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092. https://doi.org/10.1111/j.1349-7006.2010.01650.x

    Article  CAS  PubMed  Google Scholar 

  11. Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J, Alao H, Kodys K, Szabo G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56:1946–1957. https://doi.org/10.1002/hep.25873

    Article  CAS  PubMed  Google Scholar 

  12. Sharapova T, Devanarayan V, LeRoy B, Liguori MJ, Blomme E, Buck W, Maher J (2016) Evaluation of miR-122 as a serum biomarker for hepatotoxicity in investigative rat toxicology studies. Vet Pathol 53:211–221. https://doi.org/10.1177/0300985815591076

    Article  CAS  PubMed  Google Scholar 

  13. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38. https://doi.org/10.1016/j.ymeth.2007.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Várallyay E, Burgyán J, Havelda Z (2008) MicroRNA detection by Northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196. https://doi.org/10.1038/nprot.2007.528

    Article  CAS  PubMed  Google Scholar 

  15. Degliangeli F, Pompa PP, Fiammengo R (2014) Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 20:9476–9492. https://doi.org/10.1002/chem.201402649

    Article  CAS  PubMed  Google Scholar 

  16. Chandrasekaran AR, Punnoose JA, Zhou L, Dey P, Dey BK, Halvorsen K (2019) DNA Nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res 47:10489–10505. https://doi.org/10.1093/nar/gkz580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang L, Liu C, Ren W, Li Z (2012) Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces 4:6450–6453. https://doi.org/10.1021/am302268t

    Article  CAS  PubMed  Google Scholar 

  18. Hakimian F, Ghourchian H, Hashemi AS, Arastoo MR, Behnam Rad M (2018) Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 8:2943. https://doi.org/10.1038/s41598-018-20229-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia M (2020) Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron 169:112599. https://doi.org/10.1016/j.bios.2020.112599

    Article  CAS  PubMed  Google Scholar 

  20. Shabaninejad Z, Yousefi F, Movahedpour A, Ghasemi Y, Dokanehiifard S, Rezaei S, Aryan R, Savardashtaki A, Mirzaei H (2019) Electrochemical-based biosensors for microRNA detection: nanotechnology comes into view. Anal Biochem 581:113349. https://doi.org/10.1016/j.ab.2019.113349

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, Cao P, Zhu Y, Lu W, Gu N, Mao C (2015) Phage-mediated counting by the naked eye of miRNA molecules at attomolar concentrations in a Petri dish. Nat Mater 14:1058–1064. https://doi.org/10.1038/nmat4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Persano S, Guevara ML, Wolfram J, Blanco E, Shen H, Ferrari M, Pompa PP (2016) Label-free isothermal amplification assay for specific and highly sensitive colorimetric miRNA detection. ACS Omega 1:448–455. https://doi.org/10.1021/acsomega.6b00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mundinamani S (2020) Large area, multilayer graphene films as a flexible electronic material. ACS Omega 5:17479–17485. https://doi.org/10.1021/acsomega.0c01982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perreault F, Fonseca de Faria A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. https://doi.org/10.1039/c5cs00021a

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Zhi L (2018) Graphene hybridization for energy storage applications. Chem Soc Rev 47:3189–3216. https://doi.org/10.1039/c7cs00871f

    Article  CAS  PubMed  Google Scholar 

  26. Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M (2017) Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev 4400(46):4400–4416. https://doi.org/10.1039/c7cs00363c

    Article  CAS  Google Scholar 

  27. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  28. Mouhat F, Coudert FX, Bocquet ML (2020) Structure and chemistry of graphene oxide in liquid water from first principles. Nat Commun 11:1566. https://doi.org/10.1038/s41467-020-15381-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paul T, Bera SC, Agnihotri N, Mishra PP (2016) Single-molecule FRET studies of the hybridization mechanism during noncovalent adsorption and desorption of DNA on graphene oxide. J Phys Chem B 120:11628–11636. https://doi.org/10.1021/acs.jpcb.6b06017

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Pei H, Wang L, Lu J, Gao J, Jiang B, Zhao X, Fan C (2013) Nanomaterial-based fluorescent DNA analysis: a comparative study of the quenching effects of graphene oxide, carbon nanotubes, and gold nanoparticles. Adv Func Mat 23:4140. https://doi.org/10.1002/adfm.201203816

    Article  CAS  Google Scholar 

  31. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744. https://doi.org/10.1021/cr500304f

    Article  CAS  PubMed  Google Scholar 

  32. Hwang HS, Jeong JW, Kim YA, Chang M (2020) Carbon nanomaterials as versatile platforms for biosensing applications. Micromachines 11:814. https://doi.org/10.3390/mi11090814

    Article  PubMed Central  Google Scholar 

  33. Lee J, Kim Y-k, Lee S, Yoon S, Kim W-k (2019) Graphene oxide-based NET strategy for enhanced colorimetric sensing of miRNA. Sens Actuators B 282:861–867. https://doi.org/10.1016/j.snb.2018.11.149

    Article  CAS  Google Scholar 

  34. Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S (2016) Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 44:7373–7384. https://doi.org/10.1093/nar/gkw634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314. https://doi.org/10.1021/ja906987s

    Article  CAS  PubMed  Google Scholar 

  36. Kim J, Cote LJ, Kim F, Huang J (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132:260–267. https://doi.org/10.1021/ja906730d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1F1A1072921) and the Korea Institute of Toxicology (Grant No. KK-2101–01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieon Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Na, HK., Lee, S. et al. Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Microchim Acta 189, 35 (2022). https://doi.org/10.1007/s00604-021-05140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05140-1

Keywords

Navigation