Skip to main content
Log in

On-site detection of As(III) based on silver nanoparticles aggregation mediated by phosphates using surface-enhanced Raman scattering (SERS)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable and simple method was developed for on-site selective determination of As(III) based on the SERS signal of As(III)–O vibration. The method relies on the synergistic effect of nanoparticles aggregation and analyte adsorption. Experimental results demonstrated that phosphate replaced the ligands of HH@Ag NPs, which in turn facilitated the adsorption of As(III) on the surface of HH@Ag NPs. The phosphate was introduced as an agglomerating agent to improve the detection ability of the method for As(III). The method shows good selectivity and linear relationship between 5 × 10−8 and 0.8 × 10−6 M, with the detection limit of 1.8 × 10−9 M. The method was applied to actual water samples and successfully detected As(III), indicating that the method could have application potential in actual detection scenarios.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Modheji M, Emadi H, Vojoudi H (2020) Efficient pre-concentration of As(III) in food samples using guanidine-modified magnetic mesoporous silica. J Porous Mater 27:971–978. https://doi.org/10.1007/s10934-020-00873-5

    Article  CAS  Google Scholar 

  2. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626. https://doi.org/10.1021/es010027y

    Article  CAS  PubMed  Google Scholar 

  3. Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34:304–310. https://doi.org/10.1016/S0043-1354(99)00128-1

    Article  CAS  Google Scholar 

  4. Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P (2008) Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem Int Ed 47:6456–6460. https://doi.org/10.1002/anie.200800776

    Article  CAS  Google Scholar 

  5. Kumar Jena B, Retna Raj C (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80:4836–4844. https://doi.org/10.1021/ac071064w

    Article  CAS  Google Scholar 

  6. Vojoudi H, Badiei A, Bahar S, Mohammadi Ziarani G, Faridbod F, Ganjali MR (2017) Post-modification of nanoporous silica type SBA-15 by bis(3-triethoxysilylpropyl)tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technol 319:271–278. https://doi.org/10.1016/j.powtec.2017.06.028

    Article  CAS  Google Scholar 

  7. Han M-J, Hao J, Xu Z, Meng X (2011) Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta 692:96–102. https://doi.org/10.1016/j.aca.2011.02.054

    Article  CAS  PubMed  Google Scholar 

  8. Yang M, Liamtsau V, Fan C, Sylvers KL, McGoron AJ, Liu G, Fu F, Cai Y (2019) Arsenic speciation on silver nanofilms by surface-enhanced Raman spectroscopy. Anal Chem 91:8280–8288. https://doi.org/10.1021/acs.analchem.9b00999

    Article  CAS  PubMed  Google Scholar 

  9. Lu Z, Wu L, Dai X, Wang Y, Sun M, Zhou C, Du H, Rao H (2021) Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: highly sensitive electrochemical determination of hydrogen peroxide and glucose. J Hazard Mater 402:123774. https://doi.org/10.1016/j.jhazmat.2020.123774

    Article  CAS  PubMed  Google Scholar 

  10. Lu Z, Li Y, Liu T, Wang G, Sun M, Jiang Y, He H, Wang Y, Zou P, Wang X, Zhao Q, Rao H (2020) A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem Eng J 389:124417. https://doi.org/10.1016/j.cej.2020.124417

    Article  CAS  Google Scholar 

  11. Chen H, Duan F, Du J, Yin R, Zhu L, Dong J, He K, Sun Z, Wang S (2021) Surface-enhanced Raman scattering for mixing state characterization of individual fine particles during a haze episode in Beijing, China. J Environ Sci 104:216–224. https://doi.org/10.1016/j.jes.2020.12.008

    Article  Google Scholar 

  12. Sun C, Dong W, Peng J, Wan X, Sun Z, Li D, Wang S (2020) Dual-mode fluorescence–SERS sensor for sensitive and selective detection of uranyl ions based on satellite Fe3O4-Au@CdTe nanostructure. Sensors Actuators B Chem 325:128644. https://doi.org/10.1016/j.snb.2020.128644

    Article  CAS  Google Scholar 

  13. Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z (2020) Nanosol SERS quantitative analytical method: a review. TrAC Trends Anal Chem 127:115885. https://doi.org/10.1016/j.trac.2020.115885

    Article  CAS  Google Scholar 

  14. Du J, Cui J, Jing C (2014) Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun 50:347–349. https://doi.org/10.1039/C3CC46920D

    Article  CAS  Google Scholar 

  15. Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290. https://doi.org/10.1016/j.talanta.2015.08.052

    Article  CAS  PubMed  Google Scholar 

  16. Xu Z, Hao J, Li F, Meng X (2010) Surface-enhanced Raman spectroscopy of arsenate and arsenite using Ag nanofilm prepared by modified mirror reaction. J Colloid Interface Sci 347:90–95. https://doi.org/10.1016/j.jcis.2010.03.028

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Chen L, Lou T, Wang Y (2011) Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces 3:3936–3941. https://doi.org/10.1021/am200810x

    Article  CAS  PubMed  Google Scholar 

  18. Hao J, Han M-J, Han S, Meng X, Su T-L, Wang QK (2015) SERS detection of arsenic in water: a review. J Environ Sci 36:152–162. https://doi.org/10.1016/j.jes.2015.05.013

    Article  CAS  Google Scholar 

  19. Zhou Z-M, Zheng H, Liu T, Xie Z-Z, Luo S-H, Chen G-Y, Tian Z-Q, Liu G-K (2021) Improving SERS sensitivity toward trace sulfonamides: the key role of trade-off interfacial interactions among the target molecules, anions, and cations on the SERS active surface. Anal Chem 93:8603–8612. https://doi.org/10.1021/acs.analchem.1c01530

    Article  CAS  PubMed  Google Scholar 

  20. Xie L, Lu J, Liu T, Chen G, Liu G, Ren B, Tian Z (2020) Key role of direct adsorption on SERS sensitivity: synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced Raman spectroscopy substrate. J Physical Chem Lett 11:1022–1029. https://doi.org/10.1021/acs.jpclett.9b03724

    Article  CAS  Google Scholar 

  21. Lu P, Zhu C (2011) Arsenic Eh–pH diagrams at 25°C and 1 bar. Environ Earth Sci 62:1673–1683. https://doi.org/10.1007/s12665-010-0652-x

    Article  CAS  Google Scholar 

  22. Greaves SJ, Griffith WP (1988) Surface-enhanced Raman scattering (SERS) from silver colloids of vanadate, phosphate and arsenate. J Raman Spectrosc 19:503–507. https://doi.org/10.1002/jrs.1250190803

    Article  CAS  Google Scholar 

  23. Xu L-J, Zong C, Zheng X-S, Hu P, Feng J-M, Ren B (2014) Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem 86:2238–2245. https://doi.org/10.1021/ac403974n

    Article  CAS  PubMed  Google Scholar 

  24. Bell SEJ, Sirimuthu NMS (2006) Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–15581. https://doi.org/10.1021/ja066263w

    Article  CAS  PubMed  Google Scholar 

  25. Sevilla P, García-Blanco F, García-Ramos JV, Sánchez-Cortés S (2009) Aggregation of antitumoral drug emodin on Ag nanoparticles: SEF, SERS and fluorescence lifetime experiments. Phys Chem Chem Phys 11:8342–8348. https://doi.org/10.1039/B903935J

    Article  CAS  PubMed  Google Scholar 

  26. Cañamares MV, Garcia-Ramos JV, Gómez-Varga JD, Domingo C, Sanchez-Cortes S (2005) Comparative study of the morphology, aggregation, adherence to glass, and surface-enhanced Raman scattering activity of silver nanoparticles prepared by chemical reduction of Ag+ using citrate and hydroxylamine. Langmuir 21:8546–8553. https://doi.org/10.1021/la050030l

    Article  CAS  PubMed  Google Scholar 

  27. Cañamares MV, Garcia-Ramos JV, Sanchez-Cortes S, Castillejo M, Oujja M (2008) Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties. J Colloid Interface Sci 326:103–109. https://doi.org/10.1016/j.jcis.2008.06.052

    Article  CAS  PubMed  Google Scholar 

  28. Bell SEJ, Sirimuthu NMS (2005) Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids. J Phys Chem A 109:7405–7410. https://doi.org/10.1021/jp052184f

    Article  CAS  PubMed  Google Scholar 

  29. Dong X, Gu H, Kang J, Yuan X, Wu J (2010) Comparative study of surface-enhanced Raman scattering activities of three kinds of silver colloids when adding anions as aggregating agents. Colloids Surf A Physicochem Eng Asp 368:142–147. https://doi.org/10.1016/j.colsurfa.2010.07.029

    Article  CAS  Google Scholar 

  30. Futamata M, Yu Y, Yajima T (2011) Elucidation of electrostatic interaction between cationic dyes and Ag nanoparticles generating enormous SERS enhancement in aqueous solution. J Phys Chem C 115:5271–5279. https://doi.org/10.1021/jp110146y

    Article  CAS  Google Scholar 

  31. Kämmer E, Dörfer T, Csáki A, Schumacher W, Da Costa Filho PA, Tarcea N, Fritzsche W, Rösch P, Schmitt M, Popp J (2012) Evaluation of colloids and activation agents for determination of melamine using UV-SERS. J Phys Chem C 116:6083–6091. https://doi.org/10.1021/jp211863y

    Article  CAS  Google Scholar 

  32. Bengter H, Tengroth C, Jacobsson SP (2005) New light on Ag-colloid preparation for surface-enhanced FT-Raman spectroscopy: the role of aggregation. J Raman Spectrosc 36:1015–1022. https://doi.org/10.1002/jrs.1399

    Article  CAS  Google Scholar 

  33. Yaffe NR, Ingram A, Graham D, Blanch EW (2010) A multi-component optimisation of experimental parameters for maximising SERS enhancements. J Raman Spectrosc 41:618–623. https://doi.org/10.1002/jrs.2495

    Article  CAS  Google Scholar 

  34. Li J, Zheng B, Zheng Z, Li Y, Wang J (2020) Highly sensitive and selective colorimetric and SERS dual-mode detection of arsenic (III) based on glutathione functionalized gold nanoparticles. Sensors Actuators Rep 2:100013. https://doi.org/10.1016/j.snr.2020.100013

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775042), the National Key Research and Development Program of China (2017YFA0207003), Open Fund of Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology (No. 2018B030322017), and the Fundamental Research Funds for the Central Universities (2020 MS037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Yin, R., Su, P. et al. On-site detection of As(III) based on silver nanoparticles aggregation mediated by phosphates using surface-enhanced Raman scattering (SERS). Microchim Acta 189, 44 (2022). https://doi.org/10.1007/s00604-021-05134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05134-z

Keywords

Navigation