Skip to main content
Log in

A versatile and ultrasensitive molecularly imprinted electrochemiluminescence sensor with HRP-encapsulated liposome labeled by light-triggered click reaction for pesticide residues

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel approach for trace detection of fipronil with a molecularly imprinted electrochemiluminescence sensor (MIECLS) is proposed. The sensitivity is significantly improved via signal amplification of the enzymatic reaction of horseradish peroxidase (HRP) released from encapsulated liposomes which linked onto the template molecules after rebinding. The molecularly imprinted polymer membrane was prepared through the electropolymerization of monomers with fipronil as a template. After the elution of the template molecules, the analyte fipronil was reabsorbed into the cavities. HRP-encapsulated liposomes were linked to the target molecules by light-triggered click reaction. The higher the concentration of the target was, the more HRP-encapsulated liposomes were present on the molecularly imprinted polymer (MIP) sensor. Then, HRP was liberated from liposomes, and the catalytic degradation of hydrogen peroxide (H2O2) by HRP occurs, which changed the electrochemiluminescence intensity of luminol significantly. The change of the ECL intensity was linearly proportional to the logarithm of the fipronil concentration ranging from 1.00 × 10−14 to 1.00 × 10−9 mol/L, and the detection limit was 7.77 × 10−16 mol/L. The recoveries obtained ranged from 95.7 to 105.8% with RSD < 5%. The sensitivity of the detection was significantly improved, and the analysis process was simplified in that the incubation step required in the conventional method was avoided. The sensor proposed provides a feasible platform for ultra-trace amount determination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang J, Chen W, Ju H (2019) Rapid detection of pesticide residues using a silver nanoparticles coated glass bead as nonplanar substrate for SERS sensing. Sens Actuators B Chem 287:576–583. https://doi.org/10.1016/j.snb.2019.02.084

    Article  CAS  Google Scholar 

  2. Caboni P, Sammelson RE, Casida JE (2003) Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: ethiprole compared with fipronil. J Agric Food Chem 51:7055–7061. https://doi.org/10.1021/jf030439l

    Article  CAS  PubMed  Google Scholar 

  3. Charalampous AC, Liapis KS, Bempelou ED (2019) Fipronil in eggs. Is LC-MS/MS the only option? A comparison study of LC-MS/MS and GC-ECD for the analysis of fipronil. J Chromatogr B 1129:121785. https://doi.org/10.1016/j.jchromb.2019.121785

    Article  CAS  Google Scholar 

  4. Jacob CRO, Soares HM, Carvalho SM, Nocelli RCF, Malaspina O (2013) Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull Environ Contam Toxicol 90:69–72. https://doi.org/10.1007/s00128-012-0892-4

    Article  CAS  PubMed  Google Scholar 

  5. Peng XT, Li YN, Xia H, Peng LJ, Feng YQ (2016) Rapid and sensitive detection of fipronil and its metabolites in edible oils by solid-phase extraction based on humic acid bonded silica combined with gas chromatography with electron capture detection. J Sep Sci 39:2196–2203. https://doi.org/10.1002/jssc.201501250

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A 1216:885–891. https://doi.org/10.1016/j.chroma.2008.11.076

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Q, Zhou YL, Yue SW, Lou YJ, Feng YQ (2021) Combination of modified QuEChERS and disposable polyethylene pipet assisted DLLME based on low density solvent extraction for rapid and sensitive determination of fipronil and its metabolites in eggs by GC-MS. Food Anal Methods 14:1021–1032. https://doi.org/10.1007/s12161-020-01948-4

    Article  Google Scholar 

  8. Raju KSR, Taneja I, Rashid M, Sonkar AK, Wahajuddin M, Singh SP (2016) DBS-platform for biomonitoring and toxicokinetics of toxicants: proof of concept using LC-MS/MS analysis of fipronil and its metabolites in blood. Sci Rep 6:22447. https://doi.org/10.1038/srep22447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim TY, Lim JW, Lim MC, Song NE, Woo MA (2020) Aptamer-based fluorescent assay for simple and sensitive detection of fipronil in liquid eggs. Biotechnol Bioproc E 25:246–254. https://doi.org/10.1007/s12257-019-0358-1

    Article  CAS  Google Scholar 

  10. Yang SL, Lu JN, Zhang SJ, Zhang CX, Wang QL (2018) 2D europium coordination polymer as a regenerable fluorescence probe for efficiently detecting fipronil. Analyst 143:4901–4906. https://doi.org/10.1039/c8an00701b

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Wang L, Zhang Z, Chen Y, Deng Q, Wang S (2020) Fluorometric determination of fipronil by integrating the advantages of molecularly imprinted silica and carbon quantum dots. Microchim Acta 187:12. https://doi.org/10.1007/s00604-019-4005-5

    Article  CAS  Google Scholar 

  12. Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615. https://doi.org/10.1016/j.bios.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  13. Mahmoudpour M, Torbati M, Mousavi MM, de la Guardia M, Dolatabadi JEN (2020) Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TrAC Trends Anal Chem 129:115943. https://doi.org/10.1016/j.trac.2020.115943

    Article  CAS  Google Scholar 

  14. Yang B, Fu C, Li J, Xu G (2018) Frontiers in highly sensitive molecularly imprinted electrochemical sensors: challenges and strategies. TrAC Trends Anal Chem 105:52–67. https://doi.org/10.1016/j.trac.2018.04.011

    Article  CAS  Google Scholar 

  15. Florea A, Cristea C, Vocanson F, Săndulescu R, Jaffrezic-Renault N (2015) Electrochemical sensor for the detection of estradiol based on electropolymerized molecularly imprinted polythioaniline film with signal amplification using gold nanoparticles. Electrochem Commun 59:36–39. https://doi.org/10.1016/j.elecom.2015.06.021

    Article  CAS  Google Scholar 

  16. Yao J, Chen M, Li N, Liu C, Yang M (2019) Experimental and theoretical studies of a novel electrochemical sensor based on molecularly imprinted polymer and B, N, F-CQDs/AgNPs for enhanced specific identification and dual signal amplification in highly selective and ultra-trace bisphenol S determination in plastic products. Anal Chim Acta 1066:36–48. https://doi.org/10.1016/j.aca.2019.03.051

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y, Gao H, Xu L, Waterhouse GIN, Zhang H, Qiao X, Xu Z (2020) Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification. Food Chem 332:127376. https://doi.org/10.1016/j.foodchem.2020.127376

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Peng Y, Bai J, Ning B, Sun S, Hong X, Liu Y, Liu Y, Gao Z (2014) A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer and gold nanomaterials amplification for estradiol detection. Sens Actuators B Chem 200:69–75. https://doi.org/10.1016/j.snb.2014.04.028

    Article  CAS  Google Scholar 

  19. Que X, Liu B, Fu L, Zhuang J, Chen G, Tang D (2013) Molecular imprint for electrochemical detection of streptomycin residues using enzyme signal amplification. Electroanalysis 25:531–537. https://doi.org/10.1002/elan.201200468

    Article  CAS  Google Scholar 

  20. Li J, Jiang F, Wei X (2010) Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination. Anal Chem 82:6074–6078. https://doi.org/10.1021/ac100667m

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Tao H, Li J (2012) Molecularly imprinted electrochemical luminescence sensor based on enzymatic amplification for ultratrace isoproturon determination. Electroanalysis 24:1664–1670. https://doi.org/10.1002/elan.201200088

    Article  CAS  Google Scholar 

  22. Li J, Li S, Wei X, Tao H, Pan H (2012) Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. Anal Chem 84:9951–9955. https://doi.org/10.1021/ac302401s

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Hou S, Tong P, Li J (2020) Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2020.1805293

    Article  PubMed  Google Scholar 

  24. Xu J, Liu Y, Hsu S.-h, (2019) Hydrogels based on Schiff base linkages for biomedical applications. Molecules 24:3005. https://doi.org/10.3390/molecules24163005

    Article  CAS  PubMed Central  Google Scholar 

  25. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004::AID-ANIE2004%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  26. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chem Rev 113:4905–4979. https://doi.org/10.1021/cr200409f

    Article  CAS  PubMed  Google Scholar 

  27. Angelini G, Chiarini M, De Maria P, Fontana A, Gasbarri C, Siani G, Velluto D (2011) Characterization of cationic liposomes. Influence of the bilayer composition on the kinetics of the liposome breakdown. Chem Phys Lipids 164:680–687. https://doi.org/10.1016/j.chemphyslip.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  28. Mao L, Yuan R, Chai Y, Zhuo Y, Xiang Y (2011) Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay. Biosens Bioelectron 26:4204–4208. https://doi.org/10.1016/j.bios.2011.02.035

    Article  CAS  PubMed  Google Scholar 

  29. Yang B, Li J, Zhang L, Xu G (2016) A molecularly imprinted electrochemiluminescence sensor based on the mimetic enzyme catalytic effect for ultra-trace Ni2+ determination. Analyst 141:5822–5828. https://doi.org/10.1039/C6AN00926C

    Article  CAS  PubMed  Google Scholar 

  30. Zhuang J, Han B, Liu W, Zhou J, Liu K, Yang D, Tang D (2018) Liposome-amplified photoelectrochemical immunoassay for highly sensitive monitoring of disease biomarkers based on a split-type strategy. Biosens Bioelectron 99:230–236. https://doi.org/10.1016/j.bios.2017.07.067

    Article  CAS  PubMed  Google Scholar 

  31. de OliveiraACS UJC, Borges SV (2021) Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films. J Food Process Preserv 45:e15060. https://doi.org/10.1111/jfpp.15060

    Article  CAS  Google Scholar 

  32. Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci 82:1195–1202. https://doi.org/10.1002/app.1953

    Article  CAS  Google Scholar 

  33. Yin J, Chen X, Chen Z (2019) Quenched electrochemiluminescence sensor of ZnO@g-C3N4 modified glassy carbon electrode for fipronil determination. Microchem J 145:295–300. https://doi.org/10.1016/j.microc.2018.09.030

    Article  CAS  Google Scholar 

  34. Ly NH, Nguyen TH, Nghi NĐ, Kim YH, Joo SW (2019) Surface-enhanced Raman scattering detection of fipronil pesticide adsorbed on silver nanoparticles. Sensors 19:1355. https://doi.org/10.3390/s19061355

    Article  CAS  PubMed Central  Google Scholar 

  35. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431. https://doi.org/10.1093/jaoac/86.2.412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (No. 21765006), Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Li, S., Jiang, Z. et al. A versatile and ultrasensitive molecularly imprinted electrochemiluminescence sensor with HRP-encapsulated liposome labeled by light-triggered click reaction for pesticide residues. Microchim Acta 189, 33 (2022). https://doi.org/10.1007/s00604-021-05133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05133-0

Keywords

Navigation