Skip to main content
Log in

A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel molecularly imprinted electrochemical biosensor for glucose detection is reported based on a hierarchical N-rich carbon conductive-coated TNO structure (TNO@NC). Firstly, TNO@NC was fabricated by a novel polypyrrole-chemical vapor deposition (PPy-CVD) method with minimal waste generation. Afterward, the electrode modification with TNO@NC was performed by dropping TNO@NC particles on glassy carbon electrode surfaces by infrared heat lamp. Finally, the glucose-imprinted electrochemical biosensor was developed in presence of 75.0 mM pyrrole and 25.0 mM glucose in a potential range from + 0.20 to + 1.20 V versus Ag/AgCl via cyclic voltammetry (CV). The physicochemical and electrochemical characterizations of the fabricated molecularly imprinted biosensor was conducted by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and CV techniques. The findings demonstrated that selective, sensitive, and stable electrochemical signals were proportional to different glucose concentrations, and the sensitivity of molecularly imprinted electrochemical biosensor for glucose detection was estimated to be 18.93 μA μM−1 cm−2 (R2 = 0.99) at + 0.30 V with the limit of detection (LOD) of 1.0 × 10−6 M. Hence, it can be speculated that the fabricated glucose-imprinted biosensor may be used in a multitude of areas, including public health and food quality.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ensafi AA, Mirzaii F, Nasr-Esfahani P, Rezaei B (2020) Ni3S2 supported on porous ball-milled silicon, a highly selective electrochemical sensor for glucose determination. Electroanal 32(8):1707–1716

    Article  CAS  Google Scholar 

  2. Lindqvist DN, Pedersen HAElig, Rasmussen LH (2018) A novel technique for determination of the fructose, glucose and sucrose distribution in nectar from orchids by HPLC-ELSD. J Chromatogr B. 1081:130–134

    Google Scholar 

  3. Liu S, Tian JQ, Wang L, Luo YL, Sun XP (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. Rsc Adv 2(2):411–413

    Article  CAS  Google Scholar 

  4. Xie WQ, Gong YX, Yu KX (2017) Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J Chromatogr A 1520:143–146

    Article  CAS  PubMed  Google Scholar 

  5. Larsen T (2015) Fluorometric determination of free glucose and glucose 6-phosphate in cows’ milk and other opaque matrices. Food Chem 166:283–286

    Article  CAS  PubMed  Google Scholar 

  6. Shen YC, Davies AG, Linfield EH, Elsey TS, Taday PF, Arnone DD (2003) The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood. Phys Med Biol 48(13):2023–2032

    Article  CAS  PubMed  Google Scholar 

  7. Hamtak M, Hosseini M, Fotouhi L, Aghazadeh M (2018) A new electrochemiluminescence biosensor for the detection of glucose based on polypyrrole/polyluminol/Ni(OH)(2)-C3N4/glucose oxidase-modified graphite electrode. Anal Methods-Uk 10(47):5723–5730

    Article  CAS  Google Scholar 

  8. Zargoosh K, Shamsipur M, Qandalee M, Piltan M, Moradi L (2011) Sensitive and selective determination of glucose in human serum and urine based on the peroxyoxalate chemiluminescence reaction of a new Fluorophore. Spectrochim Acta A 81(1):679–683

    Article  CAS  Google Scholar 

  9. Gupta VK, Atar N, Yola ML, Eryilmaz M, Torul H, Tamer U, Boyaci IH, Ustundag Z (2013) A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interf Sci 406:231–237

    Article  CAS  Google Scholar 

  10. Archana V, Xia Y, Fang RY, Kumar GG (2019) Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. Acs Sustain Chem Eng 7(7):6707–6719

    Article  CAS  Google Scholar 

  11. Xu ZH, Wang QZ, Hui ZS, Zhao S, Zhao YJ, Wang L (2021) Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: a stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem 349:129202

  12. Boubezari I, Zazoua A, Errachid A, Jaffrezic-Renault N (2021) Sensitive electrochemical detection of bioactive molecules (hydrogen peroxide, glucose, dopamine) with perovskites-based sensors. Chemosensors 9(10):289

    Article  CAS  Google Scholar 

  13. Boubezari I, Zazoua A, Bessueille F, Errachid A, Jaffrezic-Renault N (2020) Design of a new non-enzymatic sensor based on a substituted A(2)BO(4+delta) perovskite for the voltammetric detection of glucose. Electroanal 32(7):1642–1650

    Article  CAS  Google Scholar 

  14. Atta NF, Galal A, El-Ads EH (2019) Effect of B-site doping on Sr2PdO3 perovskite catalyst activity for non-enzymatic determination of glucose in biological fluids. J Electroanal Chem. 852:113523

    Article  CAS  Google Scholar 

  15. Shafi PM, Joseph N, Karthik R, Shim JJ, Bose AC, Ganesh V (2021) Lemon juice-assisted synthesis of LaMnO3 perovskite nanoparticles for electrochemical detection of dopamine. Microchem J. 164:105945

    Article  CAS  Google Scholar 

  16. Yu HX, Cheng X, Zhu HJ, Zheng RT, Liu TT, Zhang JD, Shui M, Xie Y, Shu J (2018) Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54:227–237

    Article  CAS  Google Scholar 

  17. Lou SF, Cheng XQ, Gao JL, Li Q, Wang L, Cao Y, Ma YL, Zuo PJ, Gao YZ, Du CY, Huo H, Yin GP (2018) Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Mater 11:57–66

    Article  Google Scholar 

  18. Xing LD, Yu QY, Jiang B, Chu JH, Lao CY, Wang M, Han K, Liu ZW, Bao YP, Wang W (2019) Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J Mater Chem A 7(10):5760–5768

    Article  CAS  Google Scholar 

  19. Mao WT, Liu KC, Guo G, Liu GY, Bao KY, Guo JL, Hu M, Wang WB, Li BB, Zhang KL, Qian YT (2017) Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta 253:396–402

    Article  CAS  Google Scholar 

  20. Griffith KJ, Forse AC, Griffin JM, Grey CP (2016) High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. J Am Chem Soc 138(28):8888–8899

    Article  CAS  PubMed  Google Scholar 

  21. Griffith KJ, Senyshyn A, Grey CP (2017) Structural stability from crystallographic shear in TiO2-Nb2O5 phases: cation ordering and lithiation behavior of TiNb24O62. Inorg Chem 56(7):4002–4010

    Article  CAS  PubMed  Google Scholar 

  22. Wang XF, Shen GZ (2015) Intercalation pseudo-capacitive TiNb2O7 carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 15:104–115

    Article  Google Scholar 

  23. Fei L, Xu Y, Wu X, Li Y, Xie P, Deng S, Smirnov S, Luo H (2013) SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries. Nanoscale 5(22):11102–11107

    Article  CAS  PubMed  Google Scholar 

  24. Cheng QS, Liang JW, Zhu YC, Si LL, Guo C, Qian YT (2014) Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes. J Mater Chem A 2(41):17258–17262

    Article  CAS  Google Scholar 

  25. Yuan T, Luo SN, Soule L, Wang JH, Wang YC, Sun DW, Zhao B, Li WW, Yang JH, Zheng SY, Lin ML (2020) A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Mater Today 45:8–19

    Article  Google Scholar 

  26. Akyildirim O, Kardas F, Beytur M, Yuksek H, Atar N, Yola ML (2017) Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin. J Mol Liq 243:677–681

    Article  CAS  Google Scholar 

  27. Beytur M, Kardas F, Akyildirim O, Ozkan A, Bankoglu B, Yuksek H, Yola ML, Atar N (2018) A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J Mol Liq 251:212–217

    Article  CAS  Google Scholar 

  28. Spivak DA (2006) Optimization, evaluation, and characterization of molecularly imprinted polymers (vol 57, pg 1779, 2005). Adv Drug Deliver Rev 58(1):116

    Article  CAS  Google Scholar 

  29. Ozcan N, Karaman C, Atar N, Karaman O, Yola ML (2020) A novel molecularly imprinting biosensor including graphene quantum dots/multi-walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation. Ecs J Solid State Sc. 9(12):121010

    CAS  Google Scholar 

  30. Ozcan N, Medetalibeyoglu H, Akyildirim O, Atar N, Yola ML (2020) Electrochemical detection of amyloid-beta protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater Today Commun. 23:101097

    Article  CAS  Google Scholar 

  31. Mohammadi A, Hasan MA, Liedberg B, Lundstrom I, Salaneck WR (1986) Chemical vapor-deposition (Cvd) of conducting polymers - polypyrrole. Synthetic Met 14(3):189–197

    Article  CAS  Google Scholar 

  32. Yola ML, Atar N, Qureshi MS, Ustundag Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sensor Actuat B-Chem 171:1207–1215

    Article  Google Scholar 

  33. Yola ML, Atar N (2019) Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 126:418–424

    Article  CAS  PubMed  Google Scholar 

  34. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP (2018) Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559(7715):556–563

    Article  CAS  PubMed  Google Scholar 

  35. Zhang XY, Deng SJ, Zeng YX, Yu MH, Zhong Y, Xia XH, Tong YX, Lu XH (2018) Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater. 28(44):1805618

    Article  Google Scholar 

  36. Luo SN, Zhang PC, Yuan T, Ruan JF, Peng CX, Pang YP, Sun H, Yang JH, Zheng SY (2018) Molecular self-assembly of a nanorod N-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J Mater Chem A 6(32):15755–15761

    Article  CAS  Google Scholar 

  37. Yuan T, He YS, Zhang WM, Ma ZF (2016) A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries. Chem Commun 52(1):112–115

    Article  CAS  Google Scholar 

  38. Deng SJ, Luo ZB, Liu YT, Lou XM, Lin CF, Yang C, Zhao H, Zheng P, Sun ZL, Li JB, Wang N, Wu H (2017) Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources 362:250–257

    Article  CAS  Google Scholar 

  39. Orliukas AF, Fung KZ, Venckute V, Kazlauskiene V, Miskinis J, Lelis M (2015) Structure, surface and broadband impedance spectroscopy of Li4Ti5O12 based ceramics with Nb and Ta. Solid State Ionics 271:34–41

    Article  CAS  Google Scholar 

  40. Atashbar MZ, Sun HT, Gong B, Wlodarski W, Lamb R (1998) XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method. Thin Solid Films 326(1–2):238–244

    Article  CAS  Google Scholar 

  41. Xu ZC, Li Q, Gao SA, Shang JK (2012) Synthesis and characterization of niobium-doped TiO2 Nanotube arrays by anodization of Ti-20Nb alloys. J Mater Sci Technol 28(10):865–870

    Article  CAS  Google Scholar 

  42. Lu JJ, Ma JQ, Yi JM, Shen ZL, Zhong YJ, Ma CA, Li MC (2014) Electrochemical polymerization of pyrrole containing TEMPO side chain on Pt electrode and its electrochemical activity. Electrochim Acta 130:412–417

    Article  CAS  Google Scholar 

  43. Adhami T, Ebrahimi-Kahrizsangi R, Bakhsheshi-Rad HR, Majidi S, Ghorbanzadeh M, Berto F (2021) Synthesis and electrochemical properties of TiNb2O7 and Ti2Nb10O29 anodes under various annealing atmospheres. Metals-Basel 11(6):983

    Article  CAS  Google Scholar 

  44. Yang J, Hu Y, Li YC (2019) Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosens Bioelectron 135:224–230

    Article  CAS  PubMed  Google Scholar 

  45. Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Kumar PS, Rouhi J, Baghayeri M (2021) A novel detection method for organophosphorus insecticide fenamiphos: molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interf Sci 592:174–185

    Article  CAS  Google Scholar 

  46. Bansal N (2015) Prediabetes diagnosis and treatment: a review. World J Diabetes 6(2):296–303

    Article  PubMed  PubMed Central  Google Scholar 

  47. Omer AE, Shaker G, Safavi-Naeini S, Kokabi H, Alquie G, Deshours F, Shubair RM (2020) Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci Rep-Uk 10(1):15200

    Article  Google Scholar 

  48. Nacef M, Chelaghmia ML, Affoune AM, Pontie M (2019) Electrochemical Investigation of glucose on a highly sensitive nickel-copper modified pencil graphite electrode. Electroanal 31(1):113–120

    Article  CAS  Google Scholar 

  49. Dung NQ, Duong TTT, Lam TD, Dung DD, Huy NN, Thanh DV (2019) A simple route for electrochemical glucose sensing using background current subtraction of cyclic voltammetry technique. J Electroanal Chem. 848:113323

    Article  Google Scholar 

  50. Ji DZ, Liu L, Li S, Chen C, Lu YL, Wu JJ, Liu QJ (2017) Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456

    Article  CAS  PubMed  Google Scholar 

  51. Mesch M, Zhang CJ, Braun PV, Giessen H (2015) Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2(4):475–480

    Article  CAS  Google Scholar 

  52. Chen GS, Qiu JL, Xu JQ, Fang XA, Liu Y, Liu SQ, Wei SB, Jiang RF, Luan TG, Zeng F, Zhu F, Ouyang GF (2016) A novel probe based on phenylboronic acid functionalized carbon nanotubes for ultrasensitive carbohydrate determination in biofluids and semi-solid biotissues. Chem Sci 7(2):1487–1495

    Article  CAS  PubMed  Google Scholar 

  53. Kong KV, Ho CJH, Gong TX, Lau WKO, Olivo M (2014) Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens Bioelectron 56:186–191

    Article  CAS  PubMed  Google Scholar 

  54. Mercan OB, Kilic V, Sen M (2021) Machine learning-based colorimetric determination of glucose in artificial saliva with different reagents using a smartphone coupled mu PAD. Sensor Actuat B-Chem. 329:129037

    Article  CAS  Google Scholar 

  55. Lamiri L, Belgherbi O, Dehchar C, Laidoudi S, Tounsi A, Nessark B, Habelhames F, Hamam A, Gourari B (2020) Performance of polybithiophene-palladium particles modified electrode for non-enzymatic glucose detection. Synthetic Met. 266:116437

    Article  CAS  Google Scholar 

  56. Santhosh P, Manesh KM, Uthayakumar S, Komathi S, Gopalan AI, Lee KP (2009) Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers. Bioelectrochemistry 75(1):61–66

    Article  CAS  PubMed  Google Scholar 

  57. Rogatsky E, Tomuta V, Stein DT (2007) LC/MS quantitative study of glucose by iodine attachment. Anal Chim Acta 591(2):155–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mehmet Lütfi Yola would like to thank Turkish Academy of Sciences for their invaluable support in respect to Young Scientists Award Program, TÜBA-GEBIP (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Lütfi Yola.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1727 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, C., Karaman, O., Atar, N. et al. A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection. Microchim Acta 189, 24 (2022). https://doi.org/10.1007/s00604-021-05128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05128-x

Keywords

Navigation