Skip to main content
Log in

ZnSe nanodisks:Ti3C2 MXenes-modified electrode for nucleic acid liquid biopsy with photoelectrochemical strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

ZnSe nanodisks:Ti3C2 MXene complex was prepared for the first time. Based on its remarkable photoelectrochemical performance, combined with the enzyme-free toehold-mediated strand displacement reaction, a photoelectrochemical biosensor for the detection of the non-small-cell cancer biomarker ctDNA KRAS G12D was developed. ZnSe nanodisks were in situ grown on Ti3C2 MXene surface by two-step hydrothermal method. The high conductivity and adjustable band gap of MXene significantly enhanced the photoelectric response of ZnSe. Subsequently, the photoelectrochemical biosensor was prepared by combining with the signal amplification function of p-aminophenol and the enzyme-free toehold-mediated strand displacement reaction on the modified ITO electrode surface. Under the optimized conditions, the linear detection range is 0.5 ~ 100.0 fM, and the detection limit is 0.2 fM, which realizes the sensitive detection of KRAS G12D. The photoelectrochemical biosensor constructed opens up a new pathway for the preparation of new Mxene-based composite materials and the research of photoelectrochemical biosensor.

Graphical abstract

Nucleic acid liquid biopsy with ZnSe nanodisks:Ti3C2 MXene photoelectroactive modified electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew JW (2018) Clay-inspired Mxene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv Mater 30(12):1704561

    Article  Google Scholar 

  2. Agresti A, Pazniak A, Pescetelli S, Di Vito A, Rossi D, Pecchia A, Auf der Maur M, Liedl A, Larciprete R, Kuznetsov DV, Saranin D, Di Carlo A (2019) Titanium-carbide Mxenes for work function and interface engineering in perovskite solar cells. Nat Mater 18(11):1228–1234

    Article  CAS  Google Scholar 

  3. Huang K, Li C, Li H, Ren G, Wang L, Wang W, Meng X (2020) Photocatalytic applications of two-dimensional Ti3C2 Mxenes: a review. ACS Applied Nano Materials 3(10):9581–9603

  4. Ding M, Xiao R, Zhao C, Bukhvalov D, Chen Z, Xu H, Tang H, Xu J, Yang X (2021) Evidencing interfacial charge transfer in 2d Cds/2d Mxene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Solar RRL 5(2):2000414

    Article  CAS  Google Scholar 

  5. Cui C, Cheng R, Zhang H, Zhang C, Ma Y, Shi C, Fan B, Wang H, Wang X (2020) Ultrastable Mxene@Pt/Swcnts’ nanocatalysts for hydrogen evolution reaction. Adv Func Mater 30(47):2000693

    Article  CAS  Google Scholar 

  6. Yang Q, Huang Z, Li X, Liu Z, Li H, Liang G, Wang D, Huang Q, Zhang S, Chen S, Zhi C (2019) A Wholly Degradable, Rechargeable Zn–Ti3C2 Mxene capacitor with superior anti-self-discharge function. ACS Nano 13(7):8275–8283

  7. Wang K, Zhou Y, Xu W, Huang D, Wang Z, Hong M (2016) Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram Int 42(7):8419–8424

  8. Nguyen V-H, Nguyen B-S, Hu C, Nguyen CC, Nguyen DL, Nguyen Dinh MT, Vo D-VN, Trinh QT, Shokouhimehr M, Hasani A, Kim SY, Le QV (2020) Novel architecture titanium carbide (Ti3C2Tx) Mxene cocatalysts toward photocatalytic hydrogen production: amini-review. Nanomaterials 10(4):602

  9. Soomro RA, Jawaid S, Kalawar NH, Tunesi M, Karakuş S, Kilislioğlu A, Willander M (2020) In-situ engineered TiO2/BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins. Biosens Bioelectron 166:112439

  10. Ishii K, Amagasu R, Nomura I (2019) Investigation of the N-side structures of II-VI compound semiconductor optical devices on Inp substrates. J Cryst Growth 512:96–99

    Article  CAS  Google Scholar 

  11. Xia F, Shao Z, He Y, Wang R, Wu X, Jiang T, Duhm S, Zhao J, Lee S-T, Jie J (2016) Surface charge transfer doping via transition metal oxides for efficient p-type doping of II–VI nanostructures. ACS Nano 10(11):10283–10293

  12. Ehsan MF, Shafiq M, Hamid S, Shafiee A, Usman M, Khan I, Ashiq MN, Arfan M (2020) Reactive oxygen species: new insights into photocatalytic pollutant degradation over G-C3N4/Znse nanocomposite. Appl Surf Sci 532:147418

  13. Li D, Hussain S, Wang Y, Huang C, Li P, Wang M, He T (2021) Znse/Cdse Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction. Appl Catal B: Environ 286:119887

  14. Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C (2020) Aptamer-Based Liquid Biopsy. ACS Appl Bio Mater 3(5):2743–2764

    Article  CAS  Google Scholar 

  15. Koo KM, Trau M (2020) Direct enhanced detection of multiple circulating tumor DNA variants in unprocessed plasma by magnetic-assisted bioelectrocatalytic cycling. ACS Sensors 5(10):3217–3225

    Article  CAS  Google Scholar 

  16. Kaczor-Urbanowicz KE, Wei F, Rao SL, Kim J, Shin H, Cheng J, Tu M, Wong DTW, Kim Y (2019) Clinical validity of saliva and novel technology for cancer detection. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1872(1):49–59

    Article  CAS  Google Scholar 

  17. Huerta M, Roselló S, Sabater L, Ferrer A, Tarazona N, Roda D, Gambardella V, Alfaro-Cervelló C, Garcés-Albir M, Cervantes A, Ibarrola-Villava M (2021) Circulating tumor DNA detection by digital-droplet Pcr in pancreatic ductal adenocarcinoma: a systematic review. Cancers 13(5):994

    Article  CAS  Google Scholar 

  18. Chen M, Wu D, Tu S, Yang C, Chen D, Xu Y (2021) CRISPR/Cas9 cleavage triggered Esdr for circulating tumor DNA detection based on a 3d graphene/Auptpd nanoflower biosensor. Biosens Bioelectron 173:112821

    Article  CAS  Google Scholar 

  19. Zhang N, Shi X-M, Guo H-Q, Zhao X-Z, Zhao W-W, Xu J-J, Chen H-Y (2018) Gold nanoparticle couples with entropy-driven toehold-mediated DNA strand displacement reaction on magnetic beads: toward ultrasensitive energy-transfer-based photoelectrochemical detection of Mirna-141 in real blood sample. Anal Chem 90(20):11892–11898

    Article  CAS  Google Scholar 

  20. Tahir R, Renuse S, Udainiya S, Madugundu AK, Cutler JA, Nirujogi RS, Na CH, Xu Y, Wu X, Pandey A (2021) Mutation-specific and common phosphotyrosine signatures of Kras G12d and G13d alleles. J Proteome Res 20(1):670–683

    Article  CAS  Google Scholar 

  21. Kargbo RB (2021) Targeting the Kras G12d mutant as potential therapy in cancer. ACS Med Chem Lett 12(8):1212–1213

    Article  CAS  Google Scholar 

  22. Zhu W, Hutchison JA, Dong M, Li M (2021) Frequency shift surface-enhanced raman spectroscopy sensing: an ultrasensitive multiplex assay for biomarkers in human health. ACS Sensors 6(5):1704–1716

    Article  CAS  Google Scholar 

  23. Lin J, Yu Y, Zhang Z, Gao F, Liu S, Wang W, Li G (2020) A novel approach for achieving high-efficiency photoelectrochemical water oxidation in Ingan nanorods grown on Si system: Mxene nanosheets as multifunctional interfacial modifier. Adv Func Mater 30(13):1910479

    Article  CAS  Google Scholar 

  24. Shi Z, Liu J, Liu D, Zhang Q, Lang J, Li X (2019) Preparation and comparison of the photocatalytic properties of Znse with different crystalline phases. Physica status solidi (b) 256(8):1800754

    Article  Google Scholar 

  25. Bian X, Guo B, Zhao M, Han D, Cheng W, Song F, Ding S (2019) An Enzyme-free “on-off” electrochemiluminescence biosensor for ultrasensitive detection of Pml/Rarα based on target-switched DNA nanotweezer. ACS Appl Mater Interfaces 11(4):3715–3721

    Article  CAS  Google Scholar 

  26. Singh N, Rai P, Ali MA, Kumar R, Sharma A, Malhotra BD, John R (2019) A Hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J Mater Chem B 7(24):3826–3839

    Article  CAS  Google Scholar 

  27. Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z (2017) Ti3C2 Mxene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907–13907

  28. Li M, Wang H, Wang X, Lu Q, Li H, Zhang Y, Yao S (2019) Ti3C2/Cu2O Heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens Bioelectron 142:111535

  29. Alhabeb M, Maleski K, Mathis TS, Sarycheva A, Hatter CB, Uzun S, Levitt A, Gogotsi Y (2018) Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2d titanium carbide (Mxene). Angew Chem Int Ed 57(19):5444–5448

  30. Ge XL, Di HX, Wang P, Miao XG, Zhang P, Wang HY, Ma JY, Yin LW (2020) Metal-organic framework-derived nitrogen-doped cobalt nanocluster inlaid porous carbon as high-efficiency catalyst for advanced potassium-sulfur batteries. ACS Nano 14(11):16022–16035

    Article  Google Scholar 

  31. Sun Y, Zhang YM, Zhang HX, Liu ML, Liu Y (2020) Integrating highly efficient recognition and signal transition of G-C3N4 embellished Ti3C2 Mxene hybrid nanosheets for electrogenerated chemiluminescence analysis of protein kinase activity. Anal Chem 92(15):10668–10676

  32. Ikram A, Dass S, Shrivastav R, Satsangi VR (2019) Integrating Pbs quantum dots with hematite for efficient photoelectrochemical hydrogen production. Physica status solidi (a) 216(7):1800839

    Article  Google Scholar 

  33. Han S-Y, Pan D-L, Chen H, Bu X-B, Gao Y-X, Gao H, Tian Y, Li G-S, Wang G, Cao S-L, Wan C-Q, Guo G-CA (2018) A methylthio-functionalized-MOF photocatalyst with high performance for visible-light-driven H2 evolution. Angewandte Chemie (International ed. in English) 57(31):9864–9869

  34. Hile DD, Swart HC, Motloung SV, Motaung TE, Koao LF (2019) Structural, morphological and optical studies of zinc selenide (Znse) thin films synthesized at different deposition time intervals using photo-assisted chemical bath deposition technique. Physica B: Condensed Matter 575:411706

    Article  CAS  Google Scholar 

  35. Wang L, Tian G, Chen Y, Xiao Y, Fu H (2016) In situ formation of a Zno/Znse nanonail array as a photoelectrode for enhanced photoelectrochemical water oxidation performance. Nanoscale 8(17):9366–9375

    Article  CAS  Google Scholar 

  36. Mendonça CD, Rahemi V, Hereijgers J, Breugelmans T, Machado SAS, De Wael K (2020) Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide. Electrochem Commun 117:106767

    Article  Google Scholar 

  37. Wang J, Zhang H, Zhao J, Zhang R, Zhao N, Ren H, Li Y (2019) Simultaneous determination of paracetamol and p-aminophenol using glassy carbon electrode modified with nitrogen- and sulfur- co-doped carbon dots. Microchim Acta 186(11):733

  38. Kumbhar D, Kumbhar S, Salunke G, Nalawade R, Nalawade A (2019) Effect of Cu doping on structural and optical properties of Zno nanoparticles using sol–gel method. Macromol Symp 387(1):1800192

    Article  CAS  Google Scholar 

  39. Romani L, Speltini A, Ambrosio F, Mosconi E, Profumo A, Marelli M, Margadonna S, Milella A, Fracassi F, Listorti A, De Angelis F, Malavasi L (2021) Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew Chem Int Ed 60(7):3611–3618

  40. Wang Q, Yu S, Qin W, Wu X (2020) Isopropanol-assisted synthesis of highly stable MAPbBr3/p-g-C3N4 intergrowth composite photocatalysts and their interfacial charge carrier dynamics. Nanoscale Advances 2(1):274–285

  41. Zhu J, Bošković F, Nguyen B-NT, Nitschke JR, Keyser UF (2021) Kinetics of toehold-mediated DNA strand displacement depend on FeII4L4 tetrahedron concentration. Nano Lett 21(3):1368–1374

  42. Luo T, Fan S, Liu Y, Song J (2021) Information processing based on DNA toehold-mediated strand displacement (TMSD) reaction. Nanoscale 13(4):2100–2112

    Article  CAS  Google Scholar 

  43. Li J, Yang F, Jiang B, Zhou W, Xiang Y, Yuan R (2020) The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst 145(24):7858–7863

    Article  CAS  Google Scholar 

  44. Irmisch P, Ouldridge TE, Seidel R (2020) Modeling DNA-strand displacement reactions in the presence of base-pair mismatches. J Am Chem Soc 142(26):11451–11463

    Article  CAS  Google Scholar 

  45. Rodríguez-Serrano AF, Hsing IM (2021) Allosteric regulation of DNA circuits enables minimal and rapid biosensors of small molecules. ACS Synth Biol 10(2):371–378

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21575073) and Laoshan Scholar Program of Qingdao University of Science and Technology (201802685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 639 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Qin, N. & Hun, X. ZnSe nanodisks:Ti3C2 MXenes-modified electrode for nucleic acid liquid biopsy with photoelectrochemical strategy. Microchim Acta 189, 2 (2022). https://doi.org/10.1007/s00604-021-05117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05117-0

Keywords

Navigation