Skip to main content
Log in

Complete experimental and theoretical characterization of nonlinear concentration gradient generator microfluidic device for analytical purposes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microfluidic devices that generate stable concentration gradients are efficient instruments for automated calibration for analytical and bioanalytical systems. However, little attention has been paid to the development of reusable microfluidic concentration gradient generators, which can be useful for a range of species through mathematical characterization. In this work, we develop a microfluidic device based on three steps of serial dilution that were able to generate nonlinear concentration gradient for dyes and biomolecules. The microfluidic device was described mathematically, statistically and was suitable for reusable analytical and bioanalytical analysis. The device reproducibility was assessed by experimental tests, which have shown the same gradient concentration profile for different dyes and statistical reproducibility with 95% confidence interval for bovine serum albumin (BSA). Moreover, the experimental data converged well with those  obtained by computational fluid dynamics simulation. Applicability was verified by coupling the microfluidic device to a surface plasmon resonance (SPR) biosensor, based on nanohole arrays with sensitivity of 358.7 nm RIU−1 determined by white-light SPR excitation exposed to different D-(+)-glucose aqueous solutions with 1.3361–1.4035 refractive index interval. The transmission light intensities obtained by the array of images allowed to quantify a pseudo-unknown BSA sample (160 µg mL−1) at 138 µg mL−1. The SPR analysis has been validated in parallel by fluorescence emissions, which showed a concentration of 154.8 ± 16.6 µg mL−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available with the corresponding author, Emerson Marcelo Girotto, upon reasonable request.

Code availability

Not applicable.

References

  1. Lee K, Kim C, Ahn B et al (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9:709–717. https://doi.org/10.1039/b813582g

    Article  CAS  PubMed  Google Scholar 

  2. Hu C, Liu J, Chen H, Nie F (2017) Microfluidic platforms for gradient generation and its applications. Biochem Anal Biochem 06:3–10. https://doi.org/10.4172/2161-1009.1000320

    Article  CAS  Google Scholar 

  3. Ye N, Qin J, Shi W et al (2007) Cell-based high content screening using an integrated microfluidic device. Lab Chip 7:1696–1704. https://doi.org/10.1039/b711513j

    Article  CAS  PubMed  Google Scholar 

  4. Kim D, Haynes CL (2012) Neutrophil chemotaxis within a competing gradient of chemoattractants. Anal Chem 84:6070–6078. https://doi.org/10.1021/ac3009548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ge A, Hu L, Wang X et al (2018) Logarithmic bacterial gradient chip for analyzing the effects of dietary restriction on C. elegans growth. Sensors Actuators, B Chem 255:735–744. https://doi.org/10.1016/j.snb.2017.08.088

    Article  CAS  Google Scholar 

  6. Pasirayi G, Scott SM, Islam M et al (2014) Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay. Talanta 129:491–498. https://doi.org/10.1016/j.talanta.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  7. Yan S, Chu F, Zhang H et al (2019) Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions. Spectrochim Acta - Part A Mol Biomol Spectrosc 220:117113. https://doi.org/10.1016/j.saa.2019.05.018

    Article  CAS  Google Scholar 

  8. Lee B, Jin SH, Noh YM et al (2018) Scalable static droplet array for biochemical assays based on concentration gradients. Sensors Actuators, B Chem 273:1572–1578. https://doi.org/10.1016/j.snb.2018.07.076

    Article  CAS  Google Scholar 

  9. Chen X, Ji B, Gao X et al (2020) High-throughput generation of a concentration gradient on open arrays by serial and parallel dilution for drug testing and screening. Sensors Actuators, B Chem 305:127487. https://doi.org/10.1016/j.snb.2019.127487

    Article  CAS  Google Scholar 

  10. Sun J, Ren Y, Ji J et al (2021) A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria. Anal Bioanal Chem 413:1127–1136. https://doi.org/10.1007/s00216-020-03076-8

    Article  CAS  PubMed  Google Scholar 

  11. Shi H, Hou Z, Zhao Y et al (2019) Rapid and steady concentration gradient generation platform for an antimicrobial susceptibility test. Chem Eng J 359:1327–1338. https://doi.org/10.1016/j.cej.2018.11.046

    Article  CAS  Google Scholar 

  12. Tang Q, Li X, Lai C et al (2021) Bioactive materials fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening. Bioact Mater 6:169–178. https://doi.org/10.1016/j.bioactmat.2020.07.016

    Article  CAS  PubMed  Google Scholar 

  13. Ganguly R, Lee B, Kang S et al (2021) Microfluidic single-cell trapping and cultivation for the analysis of host-viral interactions. Biotechnol Bioprocess Eng 26:179–187. https://doi.org/10.1007/s12257-020-0143-1

    Article  CAS  Google Scholar 

  14. Wang X, Liu Z, Pang Y (2017) Concentration gradient generation methods based on microfluidic systems. RSC Adv 7:29966–29984. https://doi.org/10.1039/c7ra04494a

    Article  CAS  Google Scholar 

  15. Jeon J, Choi N, Chen H et al (2019) SERS-based droplet microfluidics for high-throughput gradient analysis. Lab Chip 19:674–681. https://doi.org/10.1039/C8LC01180J

    Article  CAS  PubMed  Google Scholar 

  16. Zheng G, Lu L, Yang Y et al (2018) Development of microfluidic dilution network-based system for lab-on-a-chip microalgal bioassays. Anal Chem 90:13280–13289. https://doi.org/10.1021/acs.analchem.8b02597

    Article  CAS  PubMed  Google Scholar 

  17. Escobedo C, Chou YW, Rahman M et al (2013) Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138:1450–1458. https://doi.org/10.1039/c3an36616b

    Article  CAS  PubMed  Google Scholar 

  18. Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13:2445–2463. https://doi.org/10.1039/c3lc50107h

    Article  CAS  PubMed  Google Scholar 

  19. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545. https://doi.org/10.1039/c2lc20799k

    Article  CAS  PubMed  Google Scholar 

  20. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena. Wiley, New York

    Google Scholar 

  21. Eftekhari F, Escobedo C,  Ferreira J, Duan X, Girotto∥ EM, Brolo EG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81 (11):4308–4311. https://pubs.acs.org/doi/10.1021/ac900221y

  22. Monteiro JP, de Oliveira JH, Radovanovic E et al (2016) Microfluidic plasmonic biosensor for breast cancer antigen detection. Plasmonics 11:45–51. https://doi.org/10.1007/s11468-015-0016-1

    Article  CAS  Google Scholar 

  23. Monteiro JP, Carneiro LB, Rahman MM et al (2013) Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sensors Actuators, B Chem 178:366–370. https://doi.org/10.1016/j.snb.2012.12.090

    Article  CAS  Google Scholar 

  24. Monteiro JP, Ferreira J, Sabat RG et al (2012) SPR based biosensor using surface relief grating in transmission mode. Sensors Actuators, B Chem 174:270–273. https://doi.org/10.1016/j.snb.2012.08.026

    Article  CAS  Google Scholar 

  25. Monteiro JP, Predabon SM, Bonafé EG et al (2017) SPR platform based on image acquisition for HER2 antigen detection. Nanotechnology 28:045206. https://doi.org/10.1088/1361-6528/28/4/045206

    Article  CAS  PubMed  Google Scholar 

  26. Predabon SM, Buzzetti PHM, Visentainer JEL, et al (2020) Detection of tumor necrosis factor-alpha cytokine from the blood serum of a rat infected with Pb18 by a gold nanohole array-based plasmonic biosensor. J Nanophotonics 14. https://doi.org/10.1117/1.JNP.14.036004

  27. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277. https://doi.org/10.1016/0003-2697(91)90424-R

    Article  CAS  PubMed  Google Scholar 

  28. Cornish RJ (1928) Flow in a pipe of rectangular cross-section. Proc R Soc A Math Phys Eng Sci 120:691–700. https://doi.org/10.1098/rspa.1928.0175

    Article  Google Scholar 

  29. Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromechanics Microengineering 11:126–132

    Article  Google Scholar 

  30. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J Power Sources 128:54–60. https://doi.org/10.1016/j.jpowsour.2003.11.052

    Article  CAS  Google Scholar 

  31. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71:5340–5347

    Article  CAS  Google Scholar 

  32. Ebbesen TW, Lezec HJ, Ghaemi HF et al (1998) Extraordinary optical transmission through sub-wavelenght hole arrays. Nature 391:667–669. https://doi.org/10.1038/35570

    Article  CAS  Google Scholar 

  33. Feng L, Dawson P (2007) Optical transmission through single subwavelength apertures using prism coupled input of laser light of annular intensity profile. Opt Express 15:17863. https://doi.org/10.1364/oe.15.017863

    Article  CAS  PubMed  Google Scholar 

  34. Genet C, Ebbesen TW (2009) Light in tiny holes. Nanosci Technol A Collect Rev from Nat Journals 445:205–212. https://doi.org/10.1142/9789814287005_0021

    Article  Google Scholar 

Download references

Funding

This work was also supported by CNPq (Brazil) through Inomat-INCT, National Institute for Complex Functional Materials (CNPq 573644/2008-0) and by Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Paulo Henrique Maciel Buzzetti, Maiara Mitiko Taniguchi, Bento Pereira Cabral Júnior, Jean Halison de Oliveira, and Johny Paulo Monteiro; data curation: Paulo Henrique Maciel Buzzetti, Nayara Pereira Mendes, Maiara Mitiko Taniguchi, and Bento Pereira Cabral Júnior; formal analysis: Paulo Henrique Maciel Buzzetti, Maiara Mitiko Taniguchi, Renata Corrêa Vicentino, and Jean Halison de Oliveira; investigation: Paulo Henrique Maciel Buzzetti, Maiara Mitiko Taniguchi, Bento Pereira Cabral Júnior, and Johny Paulo Monteiro; validation: Paulo Henrique Maciel Buzzetti and Johny Paulo Monteiro; writing original draft preparation: Paulo Henrique Maciel Buzzetti, Maiara Mitiko Taniguchi, and Renata Corrêa Vicentino; writing review and editing: Marcos de Souza, Johny Paulo Monteiro, and Emerson Marcelo Girotto; visualization: Paulo Henrique Maciel Buzzetti and Maiara Mitiko Taniguchi; supervision: Marcos de Souza, Johny Paulo Monteiro, and Emerson Marcelo Girotto; project administration: Johny Paulo Monteiro and Emerson Marcelo Girotto; funding acquisition: Marcos de Souza and Emerson Marcelo Girotto.

Corresponding author

Correspondence to Emerson Marcelo Girotto.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzzetti, P.H.M., Taniguchi, M.M., de Souza Mendes, N. et al. Complete experimental and theoretical characterization of nonlinear concentration gradient generator microfluidic device for analytical purposes. Microchim Acta 189, 11 (2022). https://doi.org/10.1007/s00604-021-05110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05110-7

Keywords

Navigation