Skip to main content
Log in

GNP-CeO2- polyaniline hybrid hydrogel for electrochemical detection of peroxynitrite anion and its integration in a microfluidic platform

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Peroxynitrite anion (ONOO) is an important in vivo oxidative stress biomarker whose aberrant levels have pathophysiological implications. In this study, an electrochemical sensor for ONOO detection was developed based on graphene nanoplatelets-cerium oxide nanocomposite (GNP-CeO2) incorporated polyaniline (PANI) conducting hydrogels. The nanocomposite-hydrogel platform exhibited distinct synergistic advantages in terms of large electroactive surface coverage and providing a conductive pathway for electron transfer. Besides, the 3D porous structure of hydrogel integrated the GNP-CeO2 nanocomposite to provide hybrid materials for the evolution of catalytic activity towards electrochemical oxidation of ONOO. Various microscopic and spectroscopic characterization techniques endorsed the successful formation of GNP-CeO2-PANI hydrogel. Cyclic voltammetry (CV) measurements of GNP-CeO2-PANI hydrogel modified screen-printed electrodes (SPE) were carried out to record the current changes influenced by ONOO. The prepared sensor demonstrated a significant dose-dependent increase in CV peak current within a linear range of 5–100 µM (at a potential of 1.12 V), and a detection limit of 0.14 with a sensitivity of 29.35 ± 1.4 μA μM−1. Further, a customized microfluidic flow system was integrated with the GNP-CeO2-PANI hydrogel modified SPE to enable continuous electrochemical detection of ONOO at low sample volumes. The developed microfluidic electrochemical device demonstrated an excellent sensitivity towards ONOO under optimal experimental conditions. Overall, the fabricated microfluidic device with hybrid hydrogels as electrochemical interfaces provides a reliable assessment of ONOO levels. This work offers considerable potential for understanding the oxidative stress–related disease mechanisms through determination of ONOO in biological samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiao X, Li Y, Niu J (2018) Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal Chem 90:533–555. https://doi.org/10.1021/acs.analchem.7b04234

    Article  CAS  PubMed  Google Scholar 

  2. Apak R, Özyürek M, Güçlü K, Çapanoʇlu E (2016) Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem 64:1046–1070. https://doi.org/10.1021/acs.jafc.5b04744

    Article  CAS  PubMed  Google Scholar 

  3. D’Ischia M, Napolitano A, Manini P, Panzella L (2011) Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem Res Toxicol 24:2071–2092. https://doi.org/10.1021/tx2003118

    Article  CAS  PubMed  Google Scholar 

  4. Kumar V, Sachdev A, Matai I (2020) Self-assembled reduced graphene oxide–cerium oxide nanocomposite@cytochrome c hydrogel as a solid electrochemical reactive oxygen species detection platform. New J Chem 44:11248–11255. https://doi.org/10.1039/d0nj02038a

    Article  CAS  Google Scholar 

  5. Liu F, Li L, Zhang B et al (2019) A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analyst 144:6905–6913. https://doi.org/10.1039/c9an01693g

    Article  CAS  PubMed  Google Scholar 

  6. Subelzu N, Bartesaghi S, De Bem A, Radi R (2015) Oxidative inactivation of nitric oxide and peroxynitrite formation in the vasculature. ACS Symp Ser 2:91–145. https://doi.org/10.1021/bk-2015-1200.ch004

    Article  CAS  Google Scholar 

  7. Barker JE, Bolanos JP, Land JM et al (1996) Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev Neurosci 18:391–396. https://doi.org/10.1159/000111432

    Article  CAS  PubMed  Google Scholar 

  8. Hall DT, Ma JF, Marco S Di, Gallouzi IE (2011) Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY) 3:702–715. https://doi.org/10.18632/aging.100358

  9. Pacher P, Szabó C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141. https://doi.org/10.1016/j.coph.2006.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breen C, Pal R, Elsegood MRJ et al (2020) Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem Sci 11:3164–3170. https://doi.org/10.1039/c9sc06053g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun ZN, Wang HL, Liu FQ et al (2009) BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org Lett 11:1887–1890. https://doi.org/10.1021/ol900279z

    Article  CAS  PubMed  Google Scholar 

  12. Cao J, An W, Reeves AG, Lippert AR (2018) A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction. Chem Sci 9:2552–2558. https://doi.org/10.1039/c7sc05087a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Viera L, Ye YZ, Estévez AG, Beckman JS (1999) Immunohistochemical methods to detect nitrotyrosine. Methods Enzymol 301:373–381. https://doi.org/10.1016/S0076-6879(99)01101-5

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Tian X, Han HH et al (2019) A simple near-infrared fluorescent probe for the detection of peroxynitrite. ChemistryOpen 8:1407–1409. https://doi.org/10.1002/open.201900301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Q, Xu J, Ji C et al (2020) Ultrafast detection of peroxynitrite in Parkinson’s disease models using a near-infrared fluorescent probe. Anal Chem 92:4038–4045. https://doi.org/10.1021/acs.analchem.9b05599

    Article  CAS  PubMed  Google Scholar 

  16. Wu L, Sedgwick AC, Sun X et al (2019) Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res 52:2582–2597. https://doi.org/10.1021/acs.accounts.9b00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peteu SF, Whitman BW, Galligan JJ, Swain GM (2016) Electrochemical detection of peroxynitrite using hemin-PEDOT functionalized boron-doped diamond microelectrode Analyst.141:1796-1806. https://doi.org/10.1039/c5an02587g

  18. Koh WCA, Son JI, Choe ES, Shim YB (2010) Electrochemical detection of peroxynitrite using a biosensor based on a conducting polymer-manganese ion complex. Anal Chem 82:10075–10082. https://doi.org/10.1021/ac102041u

    Article  CAS  PubMed  Google Scholar 

  19. Peteu SF, Bose T, Bayachou M (2013) Polymerized hemin as an electrocatalytic platform for peroxynitrite’s oxidation and detection. Anal Chim Acta 780:81–88. https://doi.org/10.1016/j.aca.2013.03.057

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Zhang B, Liu F, et al (2020) Direct sensing of peroxynitrite anion at sensitive hollow tubular organic conjugated microporous polymers modified electrode. Application to selective analysis of ROS and RNS in cells. Sensors Actuators, B Chem. 306:127560. https://doi.org/10.1016/j.snb.2019.127560

  21. Gu CJ, Kong FY, Chen ZD et al (2016) Reduced graphene oxide-Hemin-Au nanohybrids: facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Biosens Bioelectron 78:300–307. https://doi.org/10.1016/j.bios.2015.11.035

    Article  CAS  PubMed  Google Scholar 

  22. Qu F, Zhang Y, Rasooly A, Yang M (2014) Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix. Anal Chem 86:973–976. https://doi.org/10.1021/ac403478z

    Article  CAS  PubMed  Google Scholar 

  23. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun. https://doi.org/10.1039/C39770000578

  24. Zhai D, Liu B, Shi Y et al (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546. https://doi.org/10.1021/nn400482d

    Article  CAS  PubMed  Google Scholar 

  25. Liu K, Wei S, Song L et al (2020) Conductive hydrogels-a novel material: recent advances and future perspectives. J Agric Food Chem 68:7269–7728. https://doi.org/10.1021/acs.jafc.0c00642

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Q, Shi G (2016) Conducting polymer-based catalysts. J Am Chem Soc 138:2868–2876. https://doi.org/10.1021/jacs.5b12474

    Article  CAS  PubMed  Google Scholar 

  27. Jia X, Ge Y, Shao L et al (2019) Tunable conducting polymers: toward sustainable and versatile batteries ACS Sustain. Chem Eng 7:14321–14340. https://doi.org/10.1021/acssuschemeng.9b02315

    Article  CAS  Google Scholar 

  28. Manavalan S, Rajaji U, Chen S-M, Govindasamy M, Selvin SSP, Chen T-W, Ali MA, Al-Hemaid FMA, Elshikh MS (2019) Sonochemical synthesis of bismuth(III) oxide decorated reduced graphene oxide nanocomposite for detection of hormone (epinephrine) in human and rat serum. Ultrason Sonochem 51:103–110. https://doi.org/10.1016/j.ultsonch.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  29. Manavalan S, Govindasamy M, Chen S-M, Rajaji U, Chen T-W, Ali MA, Al-Hemaid FMA, Elshikh MS, Farah MA (2018) Reduced graphene oxide supported raspberry-like SrWO4 for sensitive detection of catechol in green tea and drinking water samples. J Taiwan Inst Chem Eng 89:215–223. https://doi.org/10.1016/j.jtice.2018.05.001

    Article  CAS  Google Scholar 

  30. Manavalan S, Rajaji U, Wang S-F, Chang Y-J, Ramalingam RJ, Chan C-Y (2020) Investigation of sonochemically synthesized sphere-like metal tungstate nanocrystals decorated activated carbon sheets network and its application towards highly sensitive detection of arsenic drug in biological samples. J Taiwan Inst Chem Eng 114:211–219. https://doi.org/10.1016/j.jtice.2020.09.027

    Article  CAS  Google Scholar 

  31. Manavalan S, Rajaji U, Chen S-M, Chen T-W, Ramalingam RJ, Maiyalagan T, Sathiyan A, Hao Q, Lei W (2019) Microwave-assisted synthesis of gadolinium(III) oxide decorated reduced graphene oxide nanocomposite for detection of hydrogen peroxide in biological and clinical samples. J Electroanal Chem 837:167–174. https://doi.org/10.1016/j.jelechem.2019.02.023

    Article  CAS  Google Scholar 

  32. Govindasamy M, Sakthinathan S, Chen S-M, Chiu T-W, Sathiyan A, Merlin JP (2017) Reduced graphene oxide supported cobalt bipyridyl complex for sensitive detection of methyl parathion in fruits and vegetables. Electroanalysis 29:1950–1960. https://doi.org/10.1002/elan.201700186

    Article  CAS  Google Scholar 

  33. Sreeprasad TS, Berry V (2013) How do the electrical properties of graphene change with its functionalization? Small 9:341–350. https://doi.org/10.1002/smll.201202196

    Article  CAS  PubMed  Google Scholar 

  34. Al-Sagur H, Shanmuga sundaram K, Kaya EN, et al (2019) Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens Bioelectron. 139:111323. https://doi.org/10.1016/j.bios.2019.111323

  35. Lim CS, Chua CK, Pumera M (2014) Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst 139:1072–1080. https://doi.org/10.1039/c3an01585h

    Article  CAS  PubMed  Google Scholar 

  36. Cataldi P, Athanassiou A, Bayer IS (2018) Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl Sci 8:1438. https://doi.org/10.3390/app8091438

    Article  CAS  Google Scholar 

  37. Shen J, Hu Y, Li C, Qin C, Ye M (2009) Synthesis of amphiphilic graphene nanoplatelets. Small 5:82–85. https://doi.org/10.1002/smll.200800988

    Article  CAS  PubMed  Google Scholar 

  38. Wan Q, Cai H, Liu Y, Song H, Liao H, Liu S, Yang N (2013) Graphene nanoplatelets: electrochemical properties and applications for oxidation of endocrine-disrupting chemicals. Chem Eur J 19:3483–3489. https://doi.org/10.1002/chem.201203607

    Article  CAS  PubMed  Google Scholar 

  39. Sun W, Hou F, Gong S et al (2015) Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors Actuators, B Chem 219:331–337. https://doi.org/10.1016/j.snb.2015.05.015

    Article  CAS  Google Scholar 

  40. Sachdev A, Gopinath P (2016) Monitoring the intracellular distribution and ROS scavenging potential of carbon dot–cerium oxide nanocomposites in fibroblast cells. ChemNanoMat 2:226–235. https://doi.org/10.1002/cnma.201500224

    Article  CAS  Google Scholar 

  41. Thendral V, Dharshni T, Ramalakshmi M et al (2019) Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal Agric Biotechnol 19:101124. https://doi.org/10.1016/j.bcab.2019.101124

    Article  Google Scholar 

  42. Ferreira CA, Ni D, Rosenkrans ZT, Cai W (2018) Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res 11:4955–4984. https://doi.org/10.1007/s12274-018-2092-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo H, He W, Lu Y, Zhang X (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon N Y 92:33–141. https://doi.org/10.1016/j.carbon.2015.03.062

    Article  CAS  Google Scholar 

  44. Gale BK, Jafek AR, Lambert CJ et al (2018) A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3:60. https://doi.org/10.3390/inventions3030060

    Article  Google Scholar 

  45. Sydulu Singu B, Srinivasan P, Pabba S (2011) Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor. J Electrochem Soc 159:A6–A13. https://doi.org/10.1149/2.036201jes

    Article  CAS  Google Scholar 

  46. Guerra V, Wan C, Degirmenci V et al (2019) Characterisation of graphite nanoplatelets (GNP) prepared at scale by high-pressure homogenisation. J Mater Chem C 7:6383–6390. https://doi.org/10.1039/c9tc01361j

    Article  CAS  Google Scholar 

  47. Ibrahim KA (2017) Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab J Chem 10:S2668–S2674. https://doi.org/10.1016/j.arabjc.2013.10.010

    Article  CAS  Google Scholar 

  48. Sasikumar Y, Kumar AM, Gasem ZM, Ebenso EE (2015) Hybrid nanocomposite from aniline and CeO 2 nanoparticles: surface protective performance on mild steel in acidic environment. Appl Surf Sci 330:207–215. https://doi.org/10.1016/j.apsusc.2015.01.002

    Article  CAS  Google Scholar 

  49. Pana L, Yu G, Zhaia D, Lee HR, Zhaod W, Liue N, Wangd H, Tee BC-K, Shia Y, Cuid Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. PNAS 109:9287–9292. https://doi.org/10.1073/pnas.1202636109

    Article  Google Scholar 

  50. Huang H, Yao J, Li L, Zhu F, Liu Z, Zeng X, Yu X, Huang Z (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J Mater Sci 51:8728–8736. https://doi.org/10.1007/s10853-016-0137-8

    Article  CAS  Google Scholar 

  51. Chen J, Song J, Feng X (2017) Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym Bull 74:27–37. https://doi.org/10.1007/s00289-016-1695-2

    Article  CAS  Google Scholar 

  52. Zhang X, Wang S, Hu M, Xiao Y (2006) An immunosensor for ferritin based on agarose hydrogel. Biosens Bioelectron 21:2180–2183. https://doi.org/10.1016/j.bios.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  53. Oprea R, Peteu S, Subramanian P, Qi W, Pichonat E, Happy H, Bayachou M, Boukherroub R, Szunerits S (2013) Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst 138:4345–4352. https://doi.org/10.1039/C3AN00678F

    Article  CAS  PubMed  Google Scholar 

  54. Duffy GF, Moore EJ (2017) Electrochemical immunosensors for food analysis: a review of recent developments. Anal Lett 50:1–32. https://doi.org/10.1080/00032719.2016.1167900

    Article  CAS  Google Scholar 

  55. Nesakumar N, Kesavan S, Li C-Z, Alwarappan S (2019) Microfluidic electrochemical devices for biosensing. J Anal Test 3:3–18. https://doi.org/10.1007/s41664-019-0083-y

    Article  Google Scholar 

  56. Sachdev A, Samanta P, Kumar V, Kandhal K, Matai I (2020) PMAA-CeO 2 nanoparticle-based paper microfluidic device with customized image processing software for antioxidant assay. Anal Bioanal Chem 412:8197–8209. https://doi.org/10.1007/s00216-020-02960-7

    Article  CAS  PubMed  Google Scholar 

  57. Alizadeh N, Salimi A, Sham T-K (2021) CuO/Cu-MOF nanocomposite for highly sensitive detection of nitric oxide released from living cells using an electrochemical microfluidic device. Microchim Acta 188:240. https://doi.org/10.1007/s00604-021-04891-1

    Article  CAS  Google Scholar 

  58. Sharma TS, Guanglei F, Dou M, Xu F, Liu R, Qie H, Li XJ (2015) Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140:7062–7081. https://doi.org/10.1016/j.aca.2013.03.057

    Article  CAS  Google Scholar 

  59. Cortés JS, Granados SG, Ordaz AA, Jiménez JAL, Griveau S, Bedioui F (2007) Electropolymerized manganese tetraaminophthalocyanine thin films onto platinum ultramicroelectrode for the electrochemical detection of peroxynitrite in solution. Electroanalysis 19:61–64. https://doi.org/10.1002/elan.200603703

    Article  CAS  Google Scholar 

  60. Liu F, Dong H, Tian Y (2019) Real-time monitoring of peroxynitrite (ONOO) in the rat brain by developing a ratiometric electrochemical biosensor. Analyst 144:2150–2157. https://doi.org/10.1039/C9AN00079H

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Chen ZZ (2010) A novel poly(cyanocobalamin) modified glassy carbon electrode as electrochemical sensor for voltammetric determination of peroxynitrite. Talanta 82:534–539. https://doi.org/10.1016/j.talanta.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  62. Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M, Boukherrouba R, Szunerits S (2015) Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 5:1474–1484. https://doi.org/10.1039/C4RA09781E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Science and Engineering Research Board (No. ECR/2018/000199/ES), Council of Scientific & Industrial Research (CSIR-MLP 2006), and Department of Science and Technology (DST/INSPIRE/04/2016/002181), Government of India for providing the financial support for this work. Authors are thankful to CSIR-CSIO, Chandigarh for providing the access to various analytical facilities required for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ishita Matai or Abhay Sachdev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10077 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Matai, I., Kumar, A. et al. GNP-CeO2- polyaniline hybrid hydrogel for electrochemical detection of peroxynitrite anion and its integration in a microfluidic platform. Microchim Acta 188, 436 (2021). https://doi.org/10.1007/s00604-021-05105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05105-4

Keywords

Navigation