Skip to main content
Log in

MoS2 quantum dots and titanium carbide co-modified carbon nanotube heterostructure as electrode for highly sensitive detection of zearalenone

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor has been fabricated for sensitive determination of zearalenone (ZEA) in food samples based on molybdenum disulfide quantum dots (MoS2 QDs) and two-dimensional titanium carbide (2D-Ti3C2Tx MXene) co-modified multi-walled carbon nanotube (MWCNT) heterostructure. Physical and electrochemical characterizations reveal that 2D-Ti3C2Tx and MoS2 QDs co-modified MWCNTs yields synergistic signal amplification effect, together with large specific surface area and excellent conductivity for the heterostructure, endowing the developed sensor with high detection performance to ZEA. Under optimized conditions, the sensor shows a wide linear range from 3.00 to 300 ng mL−1 and a low limit of detection (LOD) of 0.32 ng mL−1, which is far lower than the maximum residue limits (MRLs) settled by the European Commission. In addition, it exhibits excellent selectivity, high reproducibility with a relative standard deviation (RSD) of 1.1%, and good repeatability (RSD 1.1%). In real sample analysis recoveries ranged from 94.8 to 105% showing the proposed electrochemical sensor has high potential in practical applications. This work presents an effective and valuable pathway for the use of novel heterostructure in the biosensing field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516

    Article  CAS  Google Scholar 

  2. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    Article  CAS  Google Scholar 

  3. Learda D (2011) Mycotoxins factsheet. 4th ed. JRC 66956, Institute of Reference Material and Measurements. European Commission Joint Research Centre, Belgium

  4. Ok HE, Choi SW, Kim M, Chun HS (2014) HPLC and UPLC methods for the determination of zearalenone in noodles, cereal snacks and infant formula. Food Chem 163:252–257

    Article  CAS  Google Scholar 

  5. Liu Z, Hua Q, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X (2022) Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem 369:131008

    Article  CAS  Google Scholar 

  6. Li R, Wen Y, Yang L, Liu A, Wang F, He P (2022) Dual quantum dot nanobeads-based fluorescence-linked immunosorbent assay for simultaneous detection of aflatoxin B1 and zearalenone in feedstuffs. Food Chem 366:130527

    Article  CAS  Google Scholar 

  7. Sun Y, Zhang Y, Wang Z (2021) A “turn-on” FRET aptasensor based on the metal-organic framework-derived porous carbon and silver nanoclusters for zearalenone determination. Sensors Actuators B Chem 347:130661

    Article  CAS  Google Scholar 

  8. Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z (2021) Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal Chim Acta 1180:338888

    Article  CAS  Google Scholar 

  9. Hoyos-Arbeláez J, Vázquez M, Contreras-Calderón J (2017) Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: a review. Food Chem 221:1371–1381

    Article  Google Scholar 

  10. Nasir MZM, Pumera M (2014) Mycotoxins: simultaneous detection of zearalenone and citrinin by voltammetry on edge plane pyrolytic graphite electrode. Electroanalysis 26(9):1901–1904

    Article  CAS  Google Scholar 

  11. Radi A-E, Eissa A, Wahdan T (2019) Voltammetric behavior of mycotoxin zearalenone at a single walled carbon nanotube screen-printed electrode. Anal Methods 11(35):4494–4500

    Article  CAS  Google Scholar 

  12. Afzali D, Padash M, Mostafavi A (2015) Determination of trace amounts of zearalenone in beverage samples with an electrochemical sensor. Mycotoxin Res 31(4):203–208

    Article  CAS  Google Scholar 

  13. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

    Article  CAS  Google Scholar 

  14. Chen X, Zhao Y, Li L, Wang Y, Wang J, Xiong J, Du S, Zhang P, Shi X, Yu J (2021) MXene/polymer nanocomposites: preparation, properties, and applications. Polym Rev 61(1):80–115

    Article  CAS  Google Scholar 

  15. Huang W, Hu L, Tang Y, Xie Z, Zhang H (2020) Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv Funct Mater 30(49):2005223

    Article  CAS  Google Scholar 

  16. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10(13):5906–5913

    Article  CAS  Google Scholar 

  17. Kalambate PK, Dhanjai A, Sinha Y, Li Y, Shen Y. Huang (2020) An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim Acta 187(7):402

    Article  CAS  Google Scholar 

  18. Huang R, Chen S, Yu J, Jiang X (2019) Self-assembled Ti3C2 /MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicol Environ Saf 184:109619

    Article  CAS  Google Scholar 

  19. Sinha A, Dhanjai B, Tan Y, Huang H, Zhao X, Dang J, Chen R (2018) Jain, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC Trends Anal Chem 102:75–90

    Article  CAS  Google Scholar 

  20. Govindasamy M, Chen S-M, Mani V, Devasenathipathy R, Umamaheswari R, Joseph Santhanaraj K, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136

    Article  CAS  Google Scholar 

  21. Li F, Li J, Cao Z, Lin X, Li X, Fang Y, An X, Fu Y, Jin J, Li R (2015) MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. J Mater Chem A 3(43):21772–21778

    Article  CAS  Google Scholar 

  22. Yang X, Jia Q, Duan F, Hu B, Wang M, He L, Song Y, Zhang Z (2019) Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci 464:78–87

    Article  CAS  Google Scholar 

  23. Lin D, Su Z, Wei G (2018) Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Mater Today Chem 7:76–83

    Article  Google Scholar 

  24. Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, Xiong W, Liao X (2021) Anchoring metallic MoS2 quantum dots over MWCNTs for highly sensitive detection of postharvest fungicide in traditional Chinese medicines. ACS Omega 6(2):1488–1496

    Article  CAS  Google Scholar 

  25. Chandran M, Thomas A, Raveendran A, Vinoba M, Bhagiyalakshmi M (2020) MoS2 confined MXene heterostructures as electrode material for energy storage application. J Energy Storage 30:101446

    Article  Google Scholar 

  26. Liu J, Liu Y, Xu D, Zhu Y, Peng W, Li Y, Zhang F, Fan X (2019) Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl Catal B 241:89–94

    Article  CAS  Google Scholar 

  27. Han F, Luo S, Xie L, Zhu J, Wei W, Chen X, Liu F, Chen W, Zhao J, Dong L, Yu K, Zeng X, Rao F, Wang L, Huang Y (2019) Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl Mater Interfaces 11(8):8443–8452

    Article  CAS  Google Scholar 

  28. Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu S (2015) One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 3(20):10693–10697

    Article  CAS  Google Scholar 

  29. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345

    Article  CAS  Google Scholar 

  30. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28(17):3333–3339

    Article  CAS  Google Scholar 

  31. Li X, Lv X, Sun X, Yang C, Zheng Y-Z, Yang L, Li S, Tao X (2021) Edge-oriented, high-percentage 1T′-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution. Appl Catal B Environ 284:119708

    Article  CAS  Google Scholar 

  32. Guo F, Zou H, Yao Q, Huang B, Lu Z-H (2020) Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution. Renew Energy 155:1293–1301

    Article  CAS  Google Scholar 

  33. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS(2) nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13(12):6222–6227

    Article  CAS  Google Scholar 

  34. Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3(1):207–229

    Article  CAS  Google Scholar 

  35. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367

    Article  Google Scholar 

  36. Afzali D, Fathirad F (2016) Determination of zearalenone with a glassy carbon electrode modified with nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid. Microchim Acta 183(9):2633–2638

    Article  CAS  Google Scholar 

  37. Kotal M, Bhowmick AK (2013) Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J Phys Chem C 117(48):25865–25875

    Article  CAS  Google Scholar 

  38. Ngamchuea K, Tharat B, Hirunsit P, Suthirakun S (2020) Electrochemical oxidation of resorcinol: mechanistic insights from experimental and computational studies. RSC Adv 10(47):28454–28463

    Article  CAS  Google Scholar 

Download references

Funding

This work was granted by the National Natural Science Foundation of China (31660492, 32060575) and the Natural Science Foundation of Jiangxi Province (20192ACBL20019, 20181BAB204017, 20171BAB214038).

Author information

Authors and Affiliations

Authors

Contributions

Hao Huang: conceptualization, experimental measurement, writing review, and editing. María Belén Camarada: conceptualization, methodology, and theory analysis. Dan Wang: manuscript revision. Xiaoning Liao: project administration, manuscript revision, and supervision. Wanming Xiong: characterization, review, and editing. Juan Du: review and editing. Jianhua Xiong: conceptualization. Yanping Hong: review and editing.

Corresponding author

Correspondence to Xiaoning Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Camarada, M.B., Wang, D. et al. MoS2 quantum dots and titanium carbide co-modified carbon nanotube heterostructure as electrode for highly sensitive detection of zearalenone. Microchim Acta 189, 15 (2022). https://doi.org/10.1007/s00604-021-05104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05104-5

Keywords

Navigation