Skip to main content
Log in

Colorimetric determination of cysteine based on Au@Pt nanoparticles as oxidase mimetics with enhanced selectivity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A H2O2-free colorimetric protocol based on urchin-like Au@Pt nanoparticles (Au@Pt NPs) has been developed for the sensitive and selective determination of cysteine (Cys). We verified the intrinsic oxidase-like activity of the Au@Pt NPs. They can act as artificial mimic oxidases to catalyse the oxidization of 3,3′,5,5′-tetramethylbenzidine (TMB) with the assistance of dissolved oxygen, avoiding the use of H2O2 in the colorimetric determination of Cys. In addition, the discrimination of Cys from the other two biothiol analogues, homocysteine and glutathione, can be easily realized through a simple ageing process. HNO3 is added to this colorimetric system to terminate the reaction by oxidizing ox-TMB (oxidized form of TMB) to diphenoquinone (DPQ), thus generating a characteristic absorption peak of DPQ at 450 nm. By recording the absorbance at 450 nm, interference from the aggregated Au@Pt NPs (absorption peak at 670 nm) when 650 nm (the characteristic absorption peak of ox-TMB) is used as the absorption wavelength can be eliminated. We investigated this H2O2-free colorimetric protocol and obtained high sensitivity, with a detection limit of 1.5 nM and relatively high selectivity. The analytical performance for real samples was further explored. The Au@Pt NP–based H2O2-free colorimetric protocol is of great significance for the sensitive and selective determination of Cys in practical samples in different scenarios.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42(14):6019–6031. https://doi.org/10.1039/C3CS60024F

    Article  CAS  PubMed  Google Scholar 

  2. Xue S, Ding S, Zhai Q, Zhang H, Feng G (2015) A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells. Biosens Bioelectron 68:316–321. https://doi.org/10.1016/j.bios.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Chen T, Wu X, Yang G (2019) CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sens Actuators, B Chem 279:374–384. https://doi.org/10.1016/j.snb.2018.09.120

    Article  CAS  Google Scholar 

  4. Liu C, Miao Y, Zhang X, Zhang S, Zhao X (2020) Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Microchim Acta 187(6):362. https://doi.org/10.1007/s00604-020-04333-4

    Article  CAS  Google Scholar 

  5. Afsharipour R, Dadfarnia S, Haji Shabani AM, Kazemi E, Pedrini A, Verucchi R (2021) Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles. Talanta 226:122055. https://doi.org/10.1016/j.talanta.2020.122055

    Article  CAS  PubMed  Google Scholar 

  6. Liu K, Gu H, Sun Y, Xu C, Yang S, Zhu B (2021) A novel rosamine-based fluorescent probe for the rapid and selective detection of cysteine in BSA, water, milk, cabbage, radish, apple, and pear. Food Chem 356:129658. https://doi.org/10.1016/j.foodchem.2021.129658

    Article  CAS  PubMed  Google Scholar 

  7. Wang C, Lan Y, Yuan F, Fereja TH, Lou B, Han S, Li J, Xu G (2019) Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system. Microchim Acta 187(1):50. https://doi.org/10.1007/s00604-019-3965-9

    Article  CAS  Google Scholar 

  8. Li J, Zhang L (2019) 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection. Electrochim Acta 328:135126. https://doi.org/10.1016/j.electacta.2019.135126

    Article  CAS  Google Scholar 

  9. Yang CP, Wu Q, Jiang ZW, Wang X, Huang CZ, Li YF (2021) Cu vacancies enhanced photoelectrochemical activity of metal-organic gel-derived CuO for the detection of l-cysteine. Talanta 228:122261. https://doi.org/10.1016/j.talanta.2021.122261

    Article  CAS  PubMed  Google Scholar 

  10. Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR (2020) A sensitive signal-on electrochemiluminescence sensor based on a nanocomposite of polypyrrole-Gd2O3 for the determination of L-cysteine in biological fluids. Microchim Acta 187(7):398. https://doi.org/10.1007/s00604-020-04372-x

    Article  CAS  Google Scholar 

  11. Sun S, Li L, Wu X, Tang R, Lei C, Wang H-H, Huang Y, Nie Z, Yao S (2020) Dual-Product Synergistically Enhanced Colorimetric Assay for Sensitive Detection of Lipid Transferase Activity. Anal Chem 92(22):15236–15243. https://doi.org/10.1021/acs.analchem.0c03973

    Article  CAS  PubMed  Google Scholar 

  12. Celik C, Can Sezgin G, Kocabas UG, Gursoy S, Ildiz N, Tan W, Ocsoy I (2021) Novel anthocyanin-based colorimetric assay for the rapid, sensitive, and quantitative detection of helicobacter pylori. Anal Chem 93(15):6246–6253. https://doi.org/10.1021/acs.analchem.1c00663

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, Sun J, Tang M, Zhang G, Yu L, Zhao X, Ai R, Yu H, Shao B, He Y (2021) Synergistic recognition-triggered charge transfer enables rapid visual colorimetric detection of fentanyl. Anal Chem 93(16):6544–6550. https://doi.org/10.1021/acs.analchem.1c00723

    Article  CAS  PubMed  Google Scholar 

  14. Li RS, Zhang HZ, Ling J, Huang CZ, Wang J (2016) Plasmonic platforms for colorimetric sensing of cysteine. Appl Spectrosc Rev 51(2):129–147. https://doi.org/10.1080/05704928.2015.1092155

    Article  CAS  Google Scholar 

  15. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Yang X-Y, Sha J-Q, Han T, Du C-J, Sun Y-J, Lan Y-Q (2019) POMOF/SWNT Nanocomposites with prominent peroxidase-mimicking activity for l-cysteine “on–off switch” colorimetric biosensing. ACS Appl Mater Interfaces 11(18):16896–16904. https://doi.org/10.1021/acsami.9b00872

    Article  CAS  PubMed  Google Scholar 

  18. Lian J, Liu P, Jin C, Liu Q-Y, Zhang X, Zhang X (2020) Flower-like CeO2/CoO p–n heterojuncted nanocomposites with enhanced peroxidase-mimicking activity for l-cysteine sensing. ACS Sustain Chem Eng 8(47):17540–17550. https://doi.org/10.1021/acssuschemeng.0c06920

    Article  CAS  Google Scholar 

  19. Mazhani M, Alula MT, Murape D (2020) Development of a cysteine sensor based on the peroxidase-like activity of AgNPs@ Fe3O4 core-shell nanostructures. Anal Chim Acta 1107:193–202. https://doi.org/10.1016/j.aca.2020.02.021

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. https://doi.org/10.1021/cr100449n

    Article  CAS  PubMed  Google Scholar 

  21. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic au@pt nanoparticles with au core and nanostructured pt shell toward highly active electrocatalysts. Chem Mater 22(23):6310–6318. https://doi.org/10.1021/cm102074w

    Article  CAS  Google Scholar 

  22. Pan N, Li-Ying W, Wu L-L, Peng C-F, Xie Z-J (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72. https://doi.org/10.1007/s00604-016-1981-6

    Article  CAS  Google Scholar 

  23. Wan L, Wu L, Su S, Zhu D, Chao J, Wang L (2020) High peroxidase-mimicking activity of gold@platinum bimetallic nanoparticle-supported molybdenum disulfide nanohybrids for the selective colorimetric analysis of cysteine. Chem Commun 56(82):12351–12354. https://doi.org/10.1039/D0CC05152G

    Article  CAS  Google Scholar 

  24. Li J-J, Qiao D, Yang S-Z, Weng G-J, Zhu J, Zhao J-W (2021) Colorimetric determination of cysteine based on inhibition of GSH-Au/Pt NCs as peroxidase mimic. Spectrochim Acta Part A Mol Biomol Spectrosc 248:119257. https://doi.org/10.1016/j.saa.2020.119257

    Article  CAS  Google Scholar 

  25. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y, Guo Y (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147. https://doi.org/10.1016/j.biomaterials.2010.09.040

    Article  CAS  PubMed  Google Scholar 

  26. Gao Z, Xu M, Lu M, Chen G, Tang D (2015) Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201. https://doi.org/10.1016/j.bios.2015.03.039

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Fu Q, Cui X, Chi H, Lu Y, Liu X, Yu M, Fei Q, Feng G, Shan H, Huan Y (2021) A colorimetric sensor for detecting thiourea based on inhibiting peroxidase-like activity of gold–platinum nanoparticles. Anal Methods 13(8):1069–1074. https://doi.org/10.1039/D0AY02283G

    Article  CAS  PubMed  Google Scholar 

  28. Peng C-F, Pan N, Zhi-Juan Q, Wei X-L, Shao G (2017) Colorimetric detection of thiocyanate based on inhibiting the catalytic activity of cystine-capped core-shell Au@Pt nanocatalysts. Talanta 175:114–120. https://doi.org/10.1016/j.talanta.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  29. Xie Z-J, Shi M-R, Wang L-Y, Peng C-F, Wei X-L (2020) Colorimetric determination of Pb2+ ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic. Microchim Acta 187(4):255. https://doi.org/10.1007/s00604-020-04234-6

    Article  CAS  Google Scholar 

  30. Cheng Q, Yang Y, Peng Y, Liu M (2020) Pt nanoparticles with high oxidase-like activity and reusability for detection of ascorbic acid. Nanomaterials 10(6):1015

    Article  CAS  Google Scholar 

  31. Long L, Liu J, Lu K, Zhang T, Xie Y, Ji Y, Wu X (2018) Highly sensitive and robust peroxidase-like activity of Au–Pt core/shell nanorod-antigen conjugates for measles virus diagnosis. Journal of Nanobiotechnology 16(1):46. https://doi.org/10.1186/s12951-018-0371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Natural Science Foundation of Jilin Province (20200201238JC) and the Science and Technology Development Program of Jilin Province (20200404147YY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfu Huan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 794 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, H., Cui, X., Lu, Y. et al. Colorimetric determination of cysteine based on Au@Pt nanoparticles as oxidase mimetics with enhanced selectivity. Microchim Acta 189, 13 (2022). https://doi.org/10.1007/s00604-021-05091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05091-7

Keywords

Navigation