Skip to main content
Log in

Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue—graphene film for glucose sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Wearable film-based smart biosensors have been developed for real-time biomolecules detection. Particularly, interfacial co-assembly of reduced graphene oxide-prussian blue (PB-RGO) film through electrostatic interaction has been systematically studied by controllable pH values, achieving optimal PB-RGO nanofilms at oil/water (O/W) phase interface driven by minimization of interfacial free energy for wearable biosensors. As a result, as-prepared wearable biosensors of PB-RGO film could be easily woven into fabrics, exhibiting excellent glucose sensing performance in amperometric detection with a sensitivity of 27.78 µA mM−1 cm−2 and a detection limit of 7.94 μM, as well as impressive mechanical robustness of continuously undergoing thousands of bending or twist. Moreover, integrated wearable smartsensing system could realize remotely real-time detection of biomarkers in actual samples of beverages or human sweat via cellphones. Prospectively, interfacial co-assembly engineering driven by pH-induced electrostatic interaction would provide a simple and efficient approach for acquiring functional graphene composites films, and further fabricate wearable smartsensing devices in health monitoring fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu BY, Li XR, Zhou L, Su B (2021) An overview of wearable and implantable electrochemical glucose sensors. Electroanalysis 33:1–10. https://doi.org/10.1002/elan.202100273

    Article  CAS  Google Scholar 

  2. Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, Hubble LJ, Wang J (2018) Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res 51:2820–2828. https://doi.org/10.1021/acs.accounts.8b00451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sedighi A, Montazer M, Mazinani S (2019) Synthesis of wearable and flexible NiP0.1-SnOx/PANI/CuO/cotton towards a non-enzymatic glucose sensor. Biosens Bioelectron 135:192–199. https://doi.org/10.1016/j.bios.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Xia T, Shen LX, Ma JL, Ma HT, Sun TR, Lv FJ, Zhu N (2021) Facet-dependent Cu2O electrocatalysis for wearable enzyme-free smart sensing. ACS Catal 11:2949–2955. https://doi.org/10.1021/acscatal.0c04797

    Article  CAS  Google Scholar 

  5. Zheng L, Liu Y, Zhang CS (2021) A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care detection of glucose in sweat. Sens Actuators B Chem 343:130131. https://doi.org/10.1016/j.snb.2021.130131

    Article  CAS  Google Scholar 

  6. Yao S, Swetha P, Zhu Y (2018) Nanomaterial-enabled wearable sensors for healthcare. Adv Healthcare Mater 7:1700889. https://doi.org/10.1002/adhm.201700889

    Article  CAS  Google Scholar 

  7. Brugger B, Rutten S, Phan KH, Moller M, Richtering W (2009) The colloidal suprastructure of smart microgels at oil-water interfaces. Angew Chem Int Ed 48:3978–3981. https://doi.org/10.1002/anie.200900239

    Article  CAS  Google Scholar 

  8. El-Kady M.F., Y. Shao, R.B. Kaner (2016) Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1. https://doi.org/10.1038/natrevmats.2016.33

  9. Zhu N, Han S, Gan S, Ulstrup J, Chi Q (2013) Graphene paper doped with chemically compatible prussian blue nanoparticles as nanohybrid electrocatalyst. Adv Funct Mater 23:5297–5306. https://doi.org/10.1002/adfm.201300605

    Article  CAS  Google Scholar 

  10. Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, Li AP, Jiang Z, Conrad EH, Berger C, Tegenkamp C, de Heer WA (2014) Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506:349–354. https://doi.org/10.1038/nature12952

    Article  CAS  PubMed  Google Scholar 

  11. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325. https://doi.org/10.1038/nnano.2010.54

    Article  CAS  PubMed  Google Scholar 

  12. Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195:4600–4605. https://doi.org/10.1016/j.jpowsour.2010.02.044

    Article  CAS  Google Scholar 

  13. Kavan L, Yum JH, Gratzel M (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5:165–172. https://doi.org/10.1021/nn102353h

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Yu D, Dai L, Chang DW, Baek JB (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209. https://doi.org/10.1021/nn200879h

    Article  CAS  PubMed  Google Scholar 

  15. Biswas S, Drzal LT (2009) A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface. Nano Lett 9:167–172. https://doi.org/10.1021/nl802724f

    Article  CAS  PubMed  Google Scholar 

  16. Levendorf MP, Ruiz-Vargas CS, Garg S, Park J (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9:4479–4483. https://doi.org/10.1021/nl902790r

    Article  CAS  PubMed  Google Scholar 

  17. Gan S, Zhong L, Wu T, Han D, Zhang J, Ulstrup J, Chi Q, Niu L (2012) Spontaneous and fast growth of large-area graphene nanofilms facilitated by oil/water interfaces. Adv Mater 24:3958–3964. https://doi.org/10.1002/adma.201201098

    Article  CAS  PubMed  Google Scholar 

  18. Woltornist SJ, Oyer AJ, Carrillo JM, Dobrynin AV, Adamson DH (2013) Conductive thin films of pristine graphene by solvent interface trapping. ACS Nano 7:7062–7066. https://doi.org/10.1021/nn402371c

    Article  CAS  PubMed  Google Scholar 

  19. Komkova MA, Karyakina EE, Karyakin AA (2018) Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc 140:11302–11307. https://doi.org/10.1021/jacs.8b05223

    Article  CAS  PubMed  Google Scholar 

  20. Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem 72:1720–1723. https://doi.org/10.1021/ac990801o

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Zhai Q, Dong D, An T, Gong S, Shi Q, Cheng W (2019) Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat. Anal Chem 91:6569–6576. https://doi.org/10.1021/acs.analchem.9b00152

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang J (2018) Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci 5:1800880. https://doi.org/10.1002/advs.201800880

    Article  CAS  Google Scholar 

  23. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes Biosens. Bioelectron 21:389–407. https://doi.org/10.1016/j.bios.2004.12.001

    Article  CAS  Google Scholar 

  24. Bandodkar AJ, Jia W, Yardimci C, Wang X, Ramirez J, Wang J (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398. https://doi.org/10.1021/ac504300n

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y, Skaff H, Emrick T, Dinsmore AD, Russell TP (2003) Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299:226–229. https://doi.org/10.1126/science.1078616

    Article  CAS  PubMed  Google Scholar 

  26. Hu L, Chen M, Fang X, Wu L (2012) Oil-water interfacial self-assembly: a novel strategy for nanofilm and nanodevice fabrication Chem. Soc Rev 41:1350–1362. https://doi.org/10.1039/c1cs15189d

    Article  CAS  Google Scholar 

  27. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles Adv. Colloid Interface Sci 100–102:503–546. https://doi.org/10.1016/s0001-8686(02)00069-6

    Article  Google Scholar 

  28. Wu X, Luo Y, Sun M, Qian J, Cao Y, Ai X, Yang H (2015) Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13:117–123. https://doi.org/10.1016/j.nanoen.2015.02.006

    Article  CAS  Google Scholar 

  29. Huang CB, Witomska S, Aliprandi A, Stoeckel MA, Bonini M, Ciesielski A, Samori P (2019) Molecule-graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring Adv. Mater 31:e1804600. https://doi.org/10.1002/adma.201804600

    Article  CAS  Google Scholar 

  30. Wang J-G, Ren L, Hou Z, Shao M (2020) Flexible reduced graphene oxide/prussian blue films for hybrid supercapacitors Chem. Eng J 397:125521. https://doi.org/10.1016/j.cej.2020.125521

    Article  CAS  Google Scholar 

  31. Lockett M, Sarmiento V, Balingit M, Oropeza-Guzmán MT, Vázquez-Mena O (2020) Direct chemical conversion of continuous CVD graphene/graphite films to graphene oxide without exfoliation. Carbon 158:202–209. https://doi.org/10.1016/j.carbon.2019.10.076

    Article  CAS  Google Scholar 

  32. Jiang Y, Shen L, Ma J, Ma H, Su Y, Zhu N (2021) Wearable porous Au Smartsensors for on-site detection of multiple metal ions Anal. Chem 93:2603–2609. https://doi.org/10.1021/acs.analchem.0c04701

    Article  CAS  Google Scholar 

  33. Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, Mercier PP, Wang J (2016) Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system ACS Sens 1:1011–1019. https://doi.org/10.1021/acssensors.6b00356

    Article  CAS  Google Scholar 

  34. Bandodkar AJ, Jeerapan I, You JM, Nunez-Flores R, Wang J (2016) Highly stretchable fully-printed CNT-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability Nano Lett 16:721–727. https://doi.org/10.1021/acs.nanolett.5b04549

    Article  CAS  PubMed  Google Scholar 

  35. Ma J, Cui Z, Du Y, Xu Q, Deng Q, Zhu N (2021) Multifunctional Prussian blue/graphene ink for flexible biosensors and supercapacitors Electrochim. Acta 387:138496. https://doi.org/10.1016/j.electacta.2021.138496

    Article  CAS  Google Scholar 

  36. Ma J, Jiang Y, Shen L, Ma H, Sun T, Lv F, Kiran A, Zhu N (2019) Wearable biomolecule smartsensors based on one-step fabricated berlin green printed arrays Biosens. Bioelectron 144:111637. https://doi.org/10.1016/j.bios.2019.111637

    Article  CAS  Google Scholar 

  37. Hu JY, Lin YP, Liao YC (2012) Inkjet printed Prussian blue films for hydrogen peroxide detection. Anal Sci 28:135–140. https://doi.org/10.2116/analsci.28.135

    Article  PubMed  Google Scholar 

  38. Zhao J, Nyein HYY, Hou L, Lin Y, Bariya M, Ahn CH, Ji W, Fan Z, Javey A (2021) A wearable nutrition tracker. Adv Mater 33:e2006444. https://doi.org/10.1002/adma.202006444

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Dalian Science and Technology Bureau, China [Grant No. 2019J12SN54], National Natural Science Foundation of China [Grant No. 22074010], and Zhang Dayu School of Chemistry, Dalian University of Technology, China.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. conceived the idea and project. J.M. performed the experiment and data analysis. Y.D., Y.J., L.S., H.M., F.L., Z.C., Y.P., L.S. performed partial experiment and data analysis. J.M. and N.Z. jointly wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nan Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Du, Y., Jiang, Y. et al. Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue—graphene film for glucose sensing. Microchim Acta 189, 46 (2022). https://doi.org/10.1007/s00604-021-05087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05087-3

Keywords

Navigation