Skip to main content
Log in

Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Alkaline phosphatase (ALP) is one of the most versatile biomarkers for early detection of several diseases, such as oral carcinomas and periodontitis; therefore, great efforts have been dedicated for developing an ALP biosensor. Multicolor detection of ALP in saliva is ideal for a point-of-care diagnosis; however, this approach is very challenging since spectral responses over wavelengths of several tens of nanometers have thus far remained difficult to achieve. In this work, a colorimetric biosensor for ALP assay has been developed based on ALP affinity to dephosphorylate glucose phosphate into glucose, which has the affinity to deposit Ag nanoshells onto Au nanobipyramids with a multicolor response. This approach provides a blue shift of localized surface plasmon resonance (LSPR) as large as 190 nm corresponding to distinctive color changes, from yellowish brown to red based on the thickness of the formed Ag shell around the Au nanobipyramids. The change in the LSPR has been conducted for highly sensitive quantitative bioassay of ALP with a detectable multicolor change with linear dynamic range of 0.1–20 U/L and low limit of detection (LOD) of 0.085 U/L. Furthermore, the developed multicolor ALP biosensor exhibits high selectivity with high recovery of 98.6% demonstrating  its reliability and suitability for a point-of-care diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malathi N, Mythili S, Vasanthi HR (2014) Salivary diagnostics: a brief review. ISRN Dent 2014:158786

    PubMed  PubMed Central  Google Scholar 

  2. Kinney JS, Ramseier CA, Giannobile WV (2007) Oral fluid-based biomarkers of alveolar bone loss in periodontitis. Ann N Y Acad Sci 1098:230–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakamura M, Slots J (1983) Salivary enzymes. J Periodontal Res 18(6):559–569

    Article  CAS  PubMed  Google Scholar 

  4. Dabra S, Singh P (2012) Evaluating the levels of salivary alkaline and acid phosphatase activities as biochemical markers for periodontal disease: a case series. Dent Res J (Isfahan) 9(1):41–45

    Article  CAS  Google Scholar 

  5. Shi D et al (2016) Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(II). Analyst 141(19):5549–5554

    Article  CAS  PubMed  Google Scholar 

  6. Hu Q et al (2017) Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex. Talanta 163:146–152

    Article  CAS  PubMed  Google Scholar 

  7. Hu Q et al (2017) Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. Anal Chim Acta 950:170–177

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z et al (2015) Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase. ACS Appl Mater Interfaces 7(50):27639–27645

    Article  CAS  PubMed  Google Scholar 

  9. Rojas-Avelizapa NG, Gómez-Ramírez M, Hernández-Gama R, Aburto J, García de León R (2013) Isolation and selection of sulfur-oxidizing bacteria for the treatment of sulfur-containing hazardous wastes. Chem Biochem Eng Q 27(1):109–117

    CAS  Google Scholar 

  10. Ye K et al (2019) Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B 7(31):4794–4800

    Article  CAS  PubMed  Google Scholar 

  11. Li PF et al (2017) A fluorescent probe for pyrophosphate based on tetraphenylethylene derivative with aggregation-induced emission characteristics. ChemistrySelect 2(13):3788–3793

    Article  CAS  Google Scholar 

  12. Wang F et al (2017) Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu2+, pyrophosphate and alkaline phosphatase activity. Biosens Bioelectron 95:21–26

    Article  CAS  PubMed  Google Scholar 

  13. Liu H et al (2017) A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Appl Mater Interfaces 9(1):120–126

    Article  CAS  PubMed  Google Scholar 

  14. Ruan C, Wang W, Gu B (2006) Detection of alkaline phosphatase using surface-enhanced raman spectroscopy. Anal Chem 78(10):3379–3384

    Article  CAS  PubMed  Google Scholar 

  15. Ingram AM, Moore BD, Graham D (2009) Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS. Bioorg Med Chem Lett 19:1569–1571

    Article  CAS  PubMed  Google Scholar 

  16. Sun D et al (2019) Cellular heterogeneity identified by single-cell alkaline phosphatase (ALP) via a SERRS-microfluidic droplet platform. Lab Chip 19(2):335–342

    Article  CAS  PubMed  Google Scholar 

  17. Zeng Y et al (2017) Rapid and reliable detection of alkaline phosphatase by a hot spots amplification strategy based on well-controlled assembly on single nanoparticle. ACS Appl Mater Interfaces 9(35):29547–29553

    Article  CAS  PubMed  Google Scholar 

  18. Craig DB, Wong JCY, Dovichi NJ (1996) Detection of attomolar concentrations of alkaline phosphatase by capillary electrophoresis using laser-induced fluorescence detection. Anal Chem 68(4):697–700

    Article  CAS  Google Scholar 

  19. Wu D, Regnier FE, Linhares MC (1994) Electrophoretically mediated micro-assay of alkaline phosphatase using electrochemical and spectrophotometric detection in capillary electrophoresis. J Chromatogr B Biomed Appl 657(2):357–363

    Article  CAS  PubMed  Google Scholar 

  20. Whisnant AR, Johnston SE, Gilman SD (2000) Capillary electrophoretic analysis of alkaline phosphatase inhibition by theophylline. Electrophoresis 21(7):1341–1348

    Article  CAS  PubMed  Google Scholar 

  21. Ino K et al (2012) Novel electrochemical methodology for activity estimation of alkaline phosphatase based on solubility difference. Anal Chem 84(18):7593–7598

    Article  CAS  PubMed  Google Scholar 

  22. Peng J et al (2015) Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity. Anal Chim Acta 878:87–94

    Article  CAS  PubMed  Google Scholar 

  23. Wu Z et al (2016) Reliable digital single molecule electrochemistry for ultrasensitive alkaline phosphatase detection. Anal Chem 88(18):9166–9172

    Article  CAS  PubMed  Google Scholar 

  24. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  25. Min Y, Wang Y (2020) Manipulating bimetallic nanostructures with tunable localized surface plasmon resonance and their applications for sensing. Front Chem 8:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breslow R, Katz I (1968) Relative reactivities of p-nitrophenyl phosphate and phosphorothioate toward alkaline phosphatase and in aqueous hydrolysis. J Am Chem Soc 90(26):7376–7377

    Article  CAS  Google Scholar 

  27. Bowers GN Jr, McComb RB (1966) A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem 12(2):70–89

    Article  CAS  PubMed  Google Scholar 

  28. Grap MJ et al (2015) Use of high frequency ultrasound to detect changes in skin integrity: an image evaluation validation procedure. Intensive Crit Care Nurs 31(3):141–147

    Article  PubMed  Google Scholar 

  29. Xu S et al (2017) Highly uniform gold nanobipyramids for ultrasensitive colorimetric detection of influenza virus. Anal Chem 89(3):1617–1623

    Article  CAS  PubMed  Google Scholar 

  30. Song H et al (2018) Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions. Anal Chim Acta 1044:154–161

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Jiang X, Wei H (2020) Phosphate-responsive 2D-metal-organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B 8(31):6905–6911

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y et al (2019) Plasmonic and photothermal immunoassay via enzyme-triggered crystal growth on gold nanostars. Anal Chem 91(3):2086–2092

    Article  CAS  PubMed  Google Scholar 

  33. Gao J et al (2018) Prereduction-promoted enhanced growth of silver nanoparticles for ultrasensitive colorimetric detection of alkaline phosphatase and carbohydrate antigen 125. Talanta 189:129–136

    Article  CAS  PubMed  Google Scholar 

  34. Luo M et al (2020) Simply converting color signal readout into thermal signal readout for breaking the color resolution limitation of colorimetric sensor. Sens Actuators B Chem 309:127707

    Article  CAS  Google Scholar 

  35. Tang Y et al (2017) Competitive photometric and visual ELISA for aflatoxin B1 based on the inhibition of the oxidation of ABTS. Microchim Acta 184(7):2387–2394

    Article  CAS  Google Scholar 

  36. Yan X et al (2019) Fluorescent detection of ascorbic acid using glutathione stabilized Au nanoclusters. Chem Phys 522:211–213

    Article  CAS  Google Scholar 

  37. May BMM, Parani S, Oluwafemi OS (2019) Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Mater Lett 236:432–435

    Article  CAS  Google Scholar 

  38. Dhara K, Debiprosad RM (2019) Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem 586:113415

    Article  CAS  PubMed  Google Scholar 

  39. Kong L et al (2020) A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal Chim Acta 1093:150–159

    Article  CAS  PubMed  Google Scholar 

  40. Guo Z et al (2012) High-purity gold nanobipyramids can be obtained by an electrolyte-assisted and functionalization-free separation route. Colloids Surf A Physicochem Eng Asp 414:492–497

    Article  CAS  Google Scholar 

  41. Li Q et al (2015) Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv Opt Mater 3(6):801–812

    Article  CAS  Google Scholar 

  42. Zhu X et al (2016) Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv Func Mater 26(3):341–352

    Article  CAS  Google Scholar 

  43. Li Q et al (2012) Crystalline structure-dependent growth of bimetallic nanostructures. Nanoscale 4(22):7070–7077

    Article  CAS  PubMed  Google Scholar 

  44. Huang C-C, Yang Z, Chang H-T (2004) Synthesis of dumbbell-shaped Au−Ag core−shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 20(15):6089–6092

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108(19):5882–5888

    Article  CAS  Google Scholar 

  46. Ah CS, Hong SD, Jang D-J (2001) Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B 105(33):7871–7873

    Article  CAS  Google Scholar 

  47. Gao Z et al (2014) High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS Appl Mater Interfaces 6(20):18243–18250

    Article  CAS  PubMed  Google Scholar 

  48. Wang C et al (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81

    Article  CAS  PubMed  Google Scholar 

  49. Tang C et al (2016) A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens Bioelectron 83:274–280

    Article  CAS  PubMed  Google Scholar 

  50. Sun J et al (2016) Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem 88(19):9789–9795

    Article  CAS  PubMed  Google Scholar 

  51. Qian Z et al (2015) Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate. Anal Chem 87(5):2966–2973

    Article  CAS  PubMed  Google Scholar 

  52. Song Z et al (2014) A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interfaces 6(19):17245–17254

    Article  CAS  PubMed  Google Scholar 

  53. Malashikhina N, Garai-Ibabe G, Pavlov V (2013) Unconventional application of conventional enzymatic substrate: first fluorogenic immunoassay based on enzymatic formation of quantum dots. Anal Chem 85(14):6866–6870

    Article  CAS  PubMed  Google Scholar 

  54. Jiang H, Wang X (2012) Alkaline phosphatase-responsive anodic electrochemiluminescence of CdSe nanoparticles. Anal Chem 84(16):6986–6993

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported in part by the National Research Foundation of Korea (No. 2021M3H4A1A02056037) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2020R1A5A1018052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8.31 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, E., Moon, BS., Shaban, S.M. et al. Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids. Microchim Acta 188, 423 (2021). https://doi.org/10.1007/s00604-021-05080-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05080-w

Keywords

Navigation