Skip to main content
Log in

Preparation of yolk-shell structure NH2-MIL-125 magnetic nanoparticles for the selective extraction of nucleotides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Yolk-shell structure magnetic metal–organic framework nanoparticles were prepared via post solvothermal method and employed as a magnetic solid-phase extraction adsorbent for selective pre-concentration of 5′-ribonucleotides by π stacking interaction, hydrogen bonding, and the strong interaction between titanium ions (Ti4+) and phosphate group. The properties of the materials were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, vibrating sample magnetometer, infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The main parameters affecting the adsorption–desorption process, including adsorbent amount, incubation time, incubation temperature, sample pH, shaking speed, elution solution, and elution time, were systematically optimized. Finally, 1.0 mg of adsorbent mixed with 1.0 mL sample solution (10.0 mmol⋅L−1 NaCl, pH 3.0) and shaken at 135 rpm for 5 min at 40 °C, washed with 1.0 mL Na3PO4-NH3∙H2O under vortex for 5 min were selected as optimized adsorption–desorption conditions. The binding performance of adsorbent towards five nucleotides was evaluated by static adsorption experiments. The data are well-fitted to the Langmuir isotherm model and the maximum adsorption capacity is 27.8 mg g−1 for adenosine 5′-monophosphate. The limit of detection of the method is 19.44–38.41 ng mL−1. Under the optimal conditions, the adsorbent was successfully applied to magnetic solid-phase extraction and high performance liquid chromatography determination of five nucleotides in octopus, chicken, fish, and pork samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Surówka K, Rzepka M, Özoğul F, Özoğul Y, Surówka B, Ligaszewski M (2020) Nucleotide degradation, biogenic amine level and microbial contamination as quality indicators of cold-stored rainbow trout (Oncorhynchus mykiss) gravad. Food Chem 346:128904. https://doi.org/10.1016/j.foodchem.2020.128904

    Article  CAS  PubMed  Google Scholar 

  2. Fung S-M, Wong X-Y, Lee S-X, Miao H, Hartman M, Wee H-L (2019) Performance of single-nucleotide polymorphisms in breast cancer risk prediction models: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 28(3):506–521. https://doi.org/10.1158/1055-9965.EPI-18-0810

    Article  PubMed  Google Scholar 

  3. Liu C-S, Ji W-Z, Jiang H-Z, Shi Y-H, He L, Gu Z-F, Zhu S-T (2021) Comparison of biochemical composition and non-volatile taste active compounds in raw, high hydrostatic pressure-treated and steamed oysters Crassostrea hongkongensis. Food Chem 344:128632. https://doi.org/10.1016/j.foodchem.2020.128632

    Article  CAS  PubMed  Google Scholar 

  4. Shin Y-A (1973) Interaction of metal ions with polynucleotides and related compounds. XXII. Effect of divalent metal ions on the conformational changes of polyribonucleotides. Biopolymers 12(11):2459–2475. https://doi.org/10.1002/bip.1973.360121103

    Article  CAS  PubMed  Google Scholar 

  5. Beringer A, Citterio-Quentin A, Otero RO, Gustin C, Clarke R, Salvi JP, Boulieu R (2017) Determination of inosine 5’-monophosphate dehydrogenase activity in red blood cells of thiopurine-treated patients using HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 1044–1045:194–199. https://doi.org/10.1016/j.jchromb.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  6. Doynikova AN, Vekshin NL (2019) Fluorescent determination of micro-quantities of RNA using Hoechst 33258 and binase. Anal Biochem 576:5–8. https://doi.org/10.1016/j.ab.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Liu F-L, Qi C-B, Cheng Q-Y, Ding J-H, Yuan B-F, Feng Y-Q (2019) Diazo reagent labeling with mass spectrometry analysis for sensitive determination of ribonucleotides in living organisms. Anal Chem 92(2):2301–2309. https://doi.org/10.1021/acs.analchem.9b05122

    Article  CAS  PubMed  Google Scholar 

  8. Yin S-J, Zhao J, Yang F-Q (2020) Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis. J Pharm Biomed Anal 192:113675. https://doi.org/10.1016/j.jpba.2020.113675

    Article  CAS  PubMed  Google Scholar 

  9. Moradi SE, Shabani AMH, Dadfarnia S, Emami S (2016) Sulfonated metal organic framework loaded on iron oxide nanoparticles as a new sorbent for the magnetic solid phase extraction of cadmium from environmental water samples. Anal Methods 8(33):6337–6346. https://doi.org/10.1039/c6ay01692h

    Article  CAS  Google Scholar 

  10. Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A (2015) Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal-organic framework. RSC Adv 5(26):19884–19892. https://doi.org/10.1039/c4ra15532g

    Article  CAS  Google Scholar 

  11. Safari M, Yamini Y, Masoomi M-Y, Morsali A, Mani-Varnosfaderani A (2017) Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim Acta 184(5):1555–1564. https://doi.org/10.1007/s00604-017-2133-3

    Article  CAS  Google Scholar 

  12. Asgharinezhad A-A, Ebrahimzadeh H (2020) A novel polymer coated magnetic porous carbon nanocomposite derived from a metal-organic framework for multi-target environmental pollutants preconcentration. J Chromatogr A 1634:461664. https://doi.org/10.1016/j.chroma.2020.461664

    Article  CAS  PubMed  Google Scholar 

  13. Asgharinezhad A-A, Ebrahimzadeh H (2021) Magnetic porous carbon nanocomposite derived from cobalt based-metal-organic framework for extraction and determination of homo and hetero-polycyclic aromatic hydrocarbons. Talanta 233:122526. https://doi.org/10.1016/j.talanta.2021.122526

    Article  CAS  PubMed  Google Scholar 

  14. Jalilian N, Ebrahimzadeh H, Asgharinezhad A-A (2019) Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. J Chromatogr A 1608:460426. https://doi.org/10.1016/j.chroma.2019.460426

    Article  CAS  PubMed  Google Scholar 

  15. Shakourian M, Yamini Y, Safari M (2020) Facile magnetization of metal-organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta 218:121139. https://doi.org/10.1016/j.talanta.2020.121139

    Article  CAS  PubMed  Google Scholar 

  16. Dargahi R, Ebrahimzadeh H, Asgharinezhad A-A, Hashemzadeh A, Amini M-M (2018) Dispersive magnetic solid-phase extraction of phthalate esters from water samples and human plasma based on a nanosorbent composed of MIL-101(Cr) metal-organic framework and magnetite nanoparticles before their determination by GC-MS. J Sep Sci 41(4):948–957. https://doi.org/10.1002/jssc.201700700

    Article  CAS  PubMed  Google Scholar 

  17. Jalilian N, Ebrahimzadeh H, Asgharinezhad A-A (2019) A nanosized magnetic metal-organic framework of type MIL-53(Fe) as an efficient sorbent for coextraction of phenols and anilines prior to their quantitation by HPLC. Mikrochim Acta 186(9):597. https://doi.org/10.1007/s00604-019-3698-9

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W-M, Yan Z-M, Gao J, Tong P, Liu W, Zhang L (2015) Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. J Chromatogr A 1400:10–18. https://doi.org/10.1016/j.chroma.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  19. Yun W-C, Yang M-T, Lin K-A (2019) Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: critical roles of modulators. J Colloid Interface Sci 543:52–63. https://doi.org/10.1016/j.jcis.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  20. Shi J-H, Qiu F, Yuan W-B, Guo M-M, Lu Z-H (2021) Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem Eng J 403:126312. https://doi.org/10.1016/j.cej.2020.126312

    Article  CAS  Google Scholar 

  21. Hu X-J, Liu X-J, Chen K, Wang G, Wang H (2019) Core-shell MOF-derived N-doped yolk-shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J Mater Chem A 7(18):11016–11037. https://doi.org/10.1039/c9ta01999e

    Article  CAS  Google Scholar 

  22. Toth G, Bugyi F, Sugar S, Mitulovic G, Vekey K, Turiak L, Drahos L (2020) Selective TiO2 phosphopeptide enrichment of complex samples in the nanogram range. Seprations 7(4):74. https://doi.org/10.3390/separations7040074

    Article  CAS  Google Scholar 

  23. Egbers PH, Harder T, Koch BP, Tebben J (2020) Siderophore purification with titanium dioxide nanoparticle solid phase extraction. Analyst 145(22):7303–7311. https://doi.org/10.1039/d0an00949k

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Yuan X-Z, Wu Y, Zeng G-M, Chen X-H, Leng L-J, Wu Z-B, Jiang L-B, Li H (2014) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction. J Hazard Mater 286:187–194. https://doi.org/10.1016/j.jhazmat.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  25. Liu J-H, Wu D, Yu Y-X, Liu J-C, Li G-L, Wu Y-N (2021) Highly sensitive determination of endocrine disrupting chemicals in foodstuffs through magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry. J Sci Food Agric 101(4):1666–1675. https://doi.org/10.1002/jsfa.10787

    Article  CAS  PubMed  Google Scholar 

  26. Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B-Environ 200:448–457. https://doi.org/10.1016/j.apcatb.2016.07.032

    Article  CAS  Google Scholar 

  27. Fan Y, Zhang H-J, Ren M-H, Zhang Y-C, Li Y, Wang L-X, Chen J-P (2021) Low-temperature catalytic degradation of chlorinated aromatic hydrocarbons over bimetallic Ce-Zr/UiO-66 catalysts. Chem Eng J 414:128782. https://doi.org/10.1016/j.cej.2021.128782

    Article  CAS  Google Scholar 

  28. Wu J-W, Wang J, Liu G, Wu Y-J, Liu X-Q, Chen X-M (2014) Giant room-temperature magnetodielectric coupling in spark plasma sintered brownmillerite ceramics. Appl Phys Lett 105(22):222906. https://doi.org/10.1063/1.4903479

    Article  CAS  Google Scholar 

  29. Li Y, Shen Y-L, Zhang Y-Y, Zeng T, Wan Q-J, Lai G-S, Yang N-J (2021) A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal Chim Acta 1158:338419. https://doi.org/10.1016/j.aca.2021.338419

    Article  CAS  PubMed  Google Scholar 

  30. Jia M-T, Zhu Y-Y, Guo D, Bi X-G, Hou X-H (2020) Surface molecularly imprinted polymer based on core-shell Fe3O4@MIL-101(Cr) for selective extraction of phenytoin sodium in plasma. Anal Chim Acta 1128:211–220. https://doi.org/10.1016/j.aca.2020.06.075

    Article  CAS  PubMed  Google Scholar 

  31. Campos do Lago A, da Silva Cavalcanti MH, Rosa MA, Silveira AT, Teixeira Tarley CR, Figueiredo EC (2019) Magnetic restricted-access carbon nanotubes for dispersive solid phase extraction of organophosphates pesticides from bovine milk samples. Anal Chim Acta 1102:11–23. https://doi.org/10.1016/j.aca.2019.12.039

    Article  CAS  PubMed  Google Scholar 

  32. Wan M, Xiang F, Liu Z, Guan D, Shao Y, Zheng L, Jin M, She Y, Cao L, Jin F, Chen R, Wang S, Wu Y, Abd El-Aty A-M, Wang J (2021) Novel Fe3O4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chem 365:130485. https://doi.org/10.1016/j.foodchem.2021.130485

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y-F, Mu G-D, Wang X-J, Zhang F, Li Y-L, Lu D-J, Chen F-M, Yang M-L, He M-Y, Liu T (2021) Fast construction of core-shell structured magnetic covalent organic framework as sorbent for solid-phase extraction of zearalenone and its derivatives prior to their determination by UHPLC-MS/MS. Mikrochim Acta 188(8):246. https://doi.org/10.1007/s00604-021-04893-z

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Zhou D-D, Zhang J-W, Gao D, Yang F-Q, Chen H, Xia Z-N (2019) Amino-terminated supramolecular cucurbit [6] uril pseudorotaxane complexes immobilized on magnetite@silica nanoparticles: a highly efficient sorbent for salvianolic acids. Talanta 195:354–365. https://doi.org/10.1016/j.talanta.2018.11.086

    Article  CAS  PubMed  Google Scholar 

  35. Wang G-X, Sun J-F, Yao Y, An X-S, Zhang H, Chu G-L, Jiang S, Guo Y-M, Sun X, Liu Y-D (2019) Detection of inosine monophosphate (IMP) in meat using double-enzyme sensor. Food Anal Method 13:420–432. https://doi.org/10.1007/s12161-019-01652-y

    Article  Google Scholar 

  36. Zhang R, Wang Z, Wang T, Su P, Yang Y (2020) Boronic acid-decorated metal-organic frameworks modified via a mixed-ligand strategy for the selective enrichment of cis-diol containing nucleosides. Anal Chim Acta 1106:42–51. https://doi.org/10.1016/j.aca.2020.01.048

    Article  CAS  PubMed  Google Scholar 

  37. Yin L-L, Li S, Zhou C-J, Cheng Z, Zheng H, Liu Y-M (2019) Determination of free nucleotides in infant formula by solid phase extraction-liquid chromatograph. Chin J Chromatography 37(12):1349–1355. https://doi.org/10.3724/sp.j.1123.2019.06027

    Article  CAS  Google Scholar 

  38. Tao D-L, Sun J-Y (2015) Solid phase extraction purification-determination of nuclectides in infant formula milk powder by HPLC. Sheng Ming Ke Xue Yi Qi 13:50–54

    Google Scholar 

  39. Chen X-Z, Wu Y-J, Huang L-Y, Yang L-J, Hong R-X, Yao H, Li S-G (2019) Magnetic dispersive solid-phase micro-extraction combined with high-performance liquid chromatography for determining nucleotides in Anoectochilus roxburghii (Wall.) Lindl. J Pharm Biomed Anal 174:432–440. https://doi.org/10.1016/j.jpba.2019.06.010

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Q, Zhou D-D, Li F, Wang Y-Z, Yang F-Q (2019) Extraction of nucleobases, nucleosides and nucleotides by employing a magnetized graphene oxide functionalized with hydrophilic phytic acid and titanium (IV) ions. Mikrochim Acta 186:187. https://doi.org/10.1007/s00604-019-3308-x

    Article  CAS  PubMed  Google Scholar 

  41. Zhou D-D, Zhang H, Zhang Q, Qian Z-M, Li W-J, Li C-H, Yang F-Q, Chen H (2019) Preparation of titanium ion functionalized polydopamine coated ferroferric oxide core-shell magnetic particles for selective extraction of nucleotides from Cordyceps and Lentinus edodes. J Chromatogr A 1591:24–32. https://doi.org/10.1016/j.chroma.2019.01.027

    Article  CAS  PubMed  Google Scholar 

  42. Li F, Li X-X, Su J, Li Y-J, He X-W, Chen L-X, Zhang Y-K (2021) Hydrophilic molecularly imprinted polymers functionalized magnetic carbon nanotubes for selective extraction of cyclic adenosine monophosphate from winter jujube. J Sep Sci 44(10):2131–2142. https://doi.org/10.1002/jssc.202001095

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored by the Natural Science Foundation of Chongqing, China (cstc2019jcyj-msxmX0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Qing Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3387 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, SJ., Wang, X., Jiang, H. et al. Preparation of yolk-shell structure NH2-MIL-125 magnetic nanoparticles for the selective extraction of nucleotides. Microchim Acta 188, 419 (2021). https://doi.org/10.1007/s00604-021-05071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05071-x

Keywords

Navigation