Skip to main content

Advertisement

Log in

Cavitas electrochemical sensors for the direct determination of salivary thiocyanate levels

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Noninvasive diagnosis using salivary samples to detect thiocyanate provides vital information on individual health. This article demonstrates the first example of a wearable sensing device to noninvasively assess thiocyanate levels. The customized screen-printed electrode system is integrated into a form of a mouthguard squarewave-voltammetric sensor toward the convenient and fast detection of the salivary biomarker within 15 s. The sensor with a protective film to mitigate the effect of biofouling offers high sensitivity and selectivity toward the detection of thiocyanate ions. Partial least square regression is applied to analyze the high-order squarewave-voltammetric data over the applied potential range of 0–1.75 V vs Ag/AgCl and quantify the thiocyanate concentration in a complex matrix. The mouthguard sensor operating under physiological conditions can monitor a wide range of thiocyanate (up to 11 mM) with a low detection limit of 30 µM. The demonstration introduces a unique approach, that obviates the requirement for blood sampling, to study thiocyanate levels of healthy people, cigarette smokers, or people with other health conditions. It is envisioned that the new cavitas device possesses a substantial promise for diverse biomedical diagnosis applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sempionatto JR, Jeerapan I, Krishnan S, Wang J (2020) Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal Chem 92:378–396. https://doi.org/10.1021/acs.analchem.9b04668

    Article  CAS  PubMed  Google Scholar 

  2. Pungjunun K, Yakoh A, Chaiyo S, Praphairaksit N, Siangproh W, Kalcher K, Chailapakul O (2021) Laser engraved microapillary pump paper-based microfluidic device for colorimetric and electrochemical detection of salivary thiocyanate. Microchim Acta 188:140. https://doi.org/10.1007/s00604-021-04793-2

    Article  CAS  Google Scholar 

  3. Ponnaiah SK, Prakash P, Vellaichamy B, Paulmony T, Selvanathan R (2018) Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets. Electrochim Acta 283:914–921. https://doi.org/10.1016/j.electacta.2018.07.012

    Article  CAS  Google Scholar 

  4. Yang Y, Song Y, Bo X, Min J, Pak OS, Zhu L, Wang M, Tu J, Kogan A, Zhang H, Hsiai TK, Li Z, Gao W (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38:217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  CAS  PubMed  Google Scholar 

  5. Mani V, Beduk T, Khushaim W, Ceylan AE, Timur S, Wolfbeis OS, Salama KN (2021) Electrochemical sensors targeting salivary biomarkers: a comprehensive review. TrAC Trends Anal Chem 135:116164. https://doi.org/10.1016/j.trac.2020.116164

    Article  CAS  Google Scholar 

  6. Ngamchuea K, Chaisiwamongkhol K, Batchelor-McAuley C, Compton RG (2018) Chemical analysis in saliva and the search for salivary biomarkers – a tutorial review. Analyst 143:81–99. https://doi.org/10.1039/C7AN01571B

    Article  CAS  Google Scholar 

  7. Arakawa T, Mitsubayashi K (2017) Cavitas sensors (soft contact lens type biosensor, mouth-guard type sensor, etc.) for daily medicine. In: Postolache OA, Mukhopadhyay SC, Jayasundera KP, Swain AK (eds) Sensors for everyday life: healthcare settings. Springer International Publishing, Cham, pp 45–65

    Chapter  Google Scholar 

  8. Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, Mercier PP, Wang J (2015) Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 74:1061–1068. https://doi.org/10.1016/j.bios.2015.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG, Ramírez J, Mercier P, Wang J (2014) Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139:1632–1636. https://doi.org/10.1039/C3AN02359A

    Article  CAS  PubMed  Google Scholar 

  10. Lee Y, Howe C, Mishra S, Lee DS, Mahmood M, Piper M, Kim Y, Tieu K, Byun H-S, Coffey JP, Shayan M, Chun Y, Costanzo RM, Yeo W-H (2018) Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc Natl Acad Sci 115:5377. https://doi.org/10.1073/pnas.1719573115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K (2020) A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal Chem 92:12201–12207. https://doi.org/10.1021/acs.analchem.0c01201

    Article  CAS  PubMed  Google Scholar 

  12. de Castro LF, de Freitas SV, Duarte LC, de Souza JAC, Paixão TRLC, Coltro WKT (2019) Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal Bioanal Chem 411:4919–4928. https://doi.org/10.1007/s00216-019-01788-0

    Article  CAS  PubMed  Google Scholar 

  13. Ciui B, Tertis M, Feurdean CN, Ilea A, Sandulescu R, Wang J, Cristea C (2019) Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral cavity. Sens Actuators B Chem 281:399–407. https://doi.org/10.1016/j.snb.2018.10.096

    Article  CAS  Google Scholar 

  14. Riedel K, Hagedorn HW, Scherer G (2013) Thiocyanate in plasma and saliva [Biomonitoring Methods, 2013]. In: The MAK-Collection for Occupational Health and Safety. Wiley, Chichester, pp 277-292. https://doi.org/10.1002/3527600418.bi5712sale0013

  15. Heliövaara M, Karvonen MJ, Punsar S, Rautanen Y, Haapakoski J (1981) Serum thiocyanate concentration and cigarette smoking in relation to overall mortality and to deaths from coronary heart disease and lung cancer. J Chronic Dis 34:305–311. https://doi.org/10.1016/0021-9681(81)90068-0

    Article  PubMed  Google Scholar 

  16. Nedoboy PE, Morgan PE, Mocatta TJ, Richards AM, Winterbourn CC, Davies MJ (2014) High plasma thiocyanate levels are associated with enhanced myeloperoxidase-induced thiol oxidation and long-term survival in subjects following a first myocardial infarction. Free Radical Res 48:1256–1266. https://doi.org/10.3109/10715762.2014.947286

    Article  CAS  Google Scholar 

  17. Madiyal A, Ajila V, Babu SG, Hegde S, Kumari S, Madi M, Achalli S, Alva P, Ullal H (2018) Status of thiocyanate levels in the serum and saliva of non-smokers, ex-smokers and smokers. Afr Health Sci 18:727–736. https://doi.org/10.4314/ahs.v18i3.31 

    Article  Google Scholar 

  18. Flieger J, Kawka J, Tatarczak-Michalewska M (2019) Levels of the thiocyanate in the saliva of tobacco smokers in comparison to e-cigarette smokers and nonsmokers measured by HPLC on a phosphatidylcholine column. Molecules 24(20):3790. https://doi.org/10.3390/molecules24203790

    Article  CAS  PubMed Central  Google Scholar 

  19. Tsuge K, Kataoka M, Seto Y (2000) Cyanide and thiocyanate levels in blood and saliva of healthy adult volunteers. J Health Sci 46:343–350. https://doi.org/10.1248/jhs.46.343

    Article  CAS  Google Scholar 

  20. Valdés M, Díaz-García M (2004) Determination of thiocyanate within physiological fluids and environmental samples: current practice and future trends. Crit Rev Anal Chem 34:9–23. https://doi.org/10.1080/10408340490273726

    Article  CAS  Google Scholar 

  21. Hanrahan G, Udeh F, Patil DG (2005) CHEMOMETRICS AND STATISTICS | Multivariate Calibration Techniques. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of Analytical Science, 2nd edn. Elsevier, Oxford, pp 27–32

    Chapter  Google Scholar 

  22. Jeerapan I, Poorahong S (2020) Review—flexible and stretchable electrochemical sensing systems: materials, energy sources, and integrations. J Electrochem Soc 167:037573. https://doi.org/10.1149/1945-7111/ab7117

    Article  CAS  Google Scholar 

  23. Kim J, Jeerapan I, Ciui B, Hartel MC, Martin A, Wang J (2017) Edible electrochemistry: food materials based electrochemical sensors. Adv Healthcare Mater. 6:1700770. https://doi.org/10.1002/adhm.201700770

  24. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120:3852–3889. https://doi.org/10.1021/acs.chemrev.9b00739

    Article  CAS  PubMed  Google Scholar 

  25. Morgan AJ, Wynn PC, Sheehy PA (2016) Milk proteins: minor proteins, bovine serum albumin, and vitamin-binding proteins and their biological properties. In: Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00947-1

  26. Patel J, Radhakrishnan L, Zhao B, Uppalapati B, Daniels RC, Ward KR, Collinson MM (2013) Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal Chem 85:11610–11618. https://doi.org/10.1021/ac403013r

    Article  CAS  PubMed  Google Scholar 

  27. Krishnan P (2007) The effect of concentration in electrochemical oxidation of thiocyanate on platinum electrode. J Solid State Electrochem 11:1327–1334. https://doi.org/10.1007/s10008-007-0295-3

    Article  CAS  Google Scholar 

  28. Griffiths ML, Barbagallo RP, Keer JT (2006) Multiple and simultaneous fluorophore detection using fluorescence spectrometry and partial least-squares regression with sample-specific confidence intervals. Anal Chem 78:513–523. https://doi.org/10.1021/ac051635p

    Article  CAS  PubMed  Google Scholar 

  29. Herrero A, Ortiz MC (1998) Modelling the background current with partial least squares regression and transference of the calibration models in the simultaneous determination of Tl and Pb by stripping voltammetry. Talanta 46:129–138. https://doi.org/10.1016/S0039-9140(97)00269-5

    Article  CAS  PubMed  Google Scholar 

  30. Sisouane M, Cascant MM, Tahiri S, Garrigues S, El Krati M, Boutchich GELK, Cervera ML, de la Guardia M (2017) Prediction of organic carbon and total nitrogen contents in organic wastes and their composts by infrared spectroscopy and partial least square regression. Talanta 167:352–358. https://doi.org/10.1016/j.talanta.2017.02.034

    Article  CAS  PubMed  Google Scholar 

  31. Wold S (1994) PLS for multivariate linear modeling. QSAR: chemometric methods in molecular design Methods and principles in medicinal chemistry. Weinheim, Germany: Verlag-Chemie

  32. Zhang W, Du Y, Wang ML (2015) Noninvasive glucose monitoring using saliva nano-biosensor. Sens Bio-Sensing Res 4:23–29. https://doi.org/10.1016/j.sbsr.2015.02.002

    Article  Google Scholar 

  33. Kumar B, Kashyap N, Avinash A, Chevvuri R, Sagar MK, Kumar S (2017) The composition, function and role of saliva in maintaining oral health: a review. Int J Contemp Dent Med Rev. https://doi.org/10.15713/ins.ijcdmr.121

  34. Soukup M, Biesiada I, Henderson A, Idowu B, Rodeback D, Ridpath L, Bridges EG, Nazar AM, Bridges KG (2012) Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol Metab Syndr 4:14. https://doi.org/10.1186/1758-5996-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Renda R (2017) Can salivary creatinine and urea levels be used to diagnose chronic kidney disease in children as accurately as serum creatinine and urea levels? A case–control study. Ren Fail 39:452–457. https://doi.org/10.1080/0886022X.2017.1308256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tékus É, Kaj M, Szabó E, Szénási NL, Kerepesi I, Figler M, Gábriel R, Wilhelm M (2012) Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biol Hung 63:89–98. https://doi.org/10.1556/ABiol.63.2012.Suppl.1.9

    Article  PubMed  Google Scholar 

  37. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal Chim Acta 1033:1–34. https://doi.org/10.1016/j.aca.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  38. Galanti LM (1997) Specificity of salivary thiocyanate as marker of cigarette smoking is not affected by alimentary sources. Clin Chem 43:184–185. https://doi.org/10.1093/clinchem/43.1.184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank to Talent Management Project of Prince of Songkla University. We also gratefully acknowledge the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research, and Innovation (MHESI).

Funding

This project was supported by the Faculty of Science Research Fund 2021 (Contract Number: 264003), Prince of Songkla University, Hat Yai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itthipon Jeerapan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 329 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangsawang, R., Buranachai, C., Thavarungkul, P. et al. Cavitas electrochemical sensors for the direct determination of salivary thiocyanate levels. Microchim Acta 188, 415 (2021). https://doi.org/10.1007/s00604-021-05067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05067-7

Keywords

Navigation