Skip to main content
Log in

Amperometric detection of antibiotic drug ciprofloxacin using cobalt-iron Prussian blue analogs capped on carbon nitride

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Ciprofloxacin (CIP) electrochemical sensor was constructed using cobalt-iron Prussian blue analogs decorated on carbon nitride (Co-Fe-PBA@CN). Co-Fe-PBA decorated on CN was fabricated using a simple sonication-assisted hydrothermal method to prepare the composite to obtain a cube-shaped structure decorated on CN sheets. The fabricated Co-Fe-PBA@CN was physically characterized using XRD and SEM analysis. Then, the fabricated composite was electrochemically studied to sense antibiotic drug ciprofloxacin (CIP). The electrochemical behavior was investigated using tools such as cyclic voltammetry (CV) and amperometric I-t studies. The Co-Fe-PBA@CN modified electrode displays a wide linear range (0.005–300 and 325–741 μM) with a low detection limit (0.7389 and 1.0313 nM) and good sensitivity (0.3157 and 0.2263 μA.μM−1cm−2) toward CIP. The Co-Fe-PBA@CN modified electrode also exhibits good selectivity, reproducibility, and repeatability toward CIP. The proposed sensor was validated with real sample analysis, biological samples like urine and blood serum containing commercially available ciprofloxacin tablets were studied, and the results demonstrate good viability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pruden A, Pei RT, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40(23):7445–7450

    Article  CAS  PubMed  Google Scholar 

  2. Zhu H, Yang B, Yang J, Yuan Y, Zhang J (2021) Persulfate-enhanced degradation of ciprofloxacin with SiC/g-C3N4 photocatalyst under visible light irradiation. Chemosphere. 276:130217

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7(4):1350–1356

    Article  CAS  PubMed  Google Scholar 

  4. Zhu X, Tsang DCW, Chen F, Li SY, Yang X (2015) Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. Environ Technol 36(24):3094–3102

    Article  CAS  PubMed  Google Scholar 

  5. Tong L, Li P, Wang YX, Zhu KZ (2009) Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere 74(8):1090–1097

    Article  CAS  PubMed  Google Scholar 

  6. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755

    Article  CAS  PubMed  Google Scholar 

  7. Gayen P, Chaplin BP (2016) Selective electrochemical detection of ciprofloxacin with a porous nafion/multiwalled carbon nanotube composite film electrode. ACS Appl Mater Interfaces 8(3):1615–1626

    Article  CAS  PubMed  Google Scholar 

  8. Hu XB, Goud KY, Kumar VS, Catanante G, Li ZH, Zhu ZG, Marty JL (2018) Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sensors Actuators B Chem 268:278–286

    Article  CAS  Google Scholar 

  9. Chen XY, Liu Y, Fang X, Li Z, Pu HH, Chang JB, Chen JH, Mao S (2019) Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens Bioelectron 126:664–671

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Wu XP, Xie ZH (2005) Determination of enrofloxacin and its metabolite ciprofloxacin by high performance capillary electrophoresis with end-column amperometric detection. J Sep Sci 28(11):1143–1148

    Article  CAS  PubMed  Google Scholar 

  11. Navalon A, Ballesteros O, Blanc R, Vilchez JL (2000) Determination of ciprofloxacin in human urine and serum samples by solid-phase spectrofluorimetry. Talanta 52(5):845–852

    Article  CAS  PubMed  Google Scholar 

  12. Guo JB, Xin X, Zhong RM, Li XP (1630−1636) Development of a biotin-avidin mediated immunoassay for simultaneous detection of danofloxacin, enrofloxacin and ciprofloxacin in milk. Adv Mater Res 2013:781–784

    Google Scholar 

  13. Pascual-Reguera MI, Parras GP, Diaz AM (2004) A single spectroscopic flow-through sensing device for determination of ciprofloxacin. J Pharm Biomed Anal 35(4):689–695

    Article  CAS  PubMed  Google Scholar 

  14. Neckel U, Joukhadar C, Frossard M, Jager W, Muller M, Mayer BX (2002) Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography. Anal Chim Acta 463(2):199–206

    Article  CAS  Google Scholar 

  15. Carlucci G (1998) Analysis of fluoroquinolones in biological fluids by high-performance liquid chromatography. J Chromatogr A 812(1−2):343–367

    Article  CAS  PubMed  Google Scholar 

  16. Shan J, Liu Y, Li RZ, Wu C, Zhu LH, Zhang JD (2015) Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. J Electroanal Chem 738:123–129

    Article  CAS  Google Scholar 

  17. Torriero AAJ, Ruiz-Diaz JJJ, Salinas E, Marchevsky EJ, Sanz MI, Raba J (2006) Enzymatic rotating biosensor for ciprofloxacin determination. Talanta 69(3):691–699

    Article  CAS  PubMed  Google Scholar 

  18. AlSharaa A, Kawde ANM (2010) Glassy carbon paste composite electrodes for the electroanalytical determination of ciprofloxacin antibiotic. Electroanalysis 22:688

    Article  Google Scholar 

  19. Xie AJ, Chen Y, Luo SP, Tao YW, Jin YS, Li WW (2015) Electrochemical detection of ciprofloxacin based on graphene modified glassy carbon electrode. Mater Technol 30(6):362–367

    Article  CAS  Google Scholar 

  20. Lim SA, Ahmed MU (2016) A simple DNA-based electrochemical biosensor for highly sensitive detection of ciprofloxacin using disposable graphene. Anal Sci 32(6):687–693

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Dome K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  PubMed  Google Scholar 

  22. Well-designed construction of yttrium orthovanadate confined on graphitic carbon nitride sheets: electrochemical investigation of dimetridazole

  23. Kuila SK, Gorai DK, Gupta B, Gupta AK, Tiwary CS, Kundu TK (2021) Lanthanum ions decorated 2-dimensional g-C3N4 for ciprofloxacin photodegradation. Chemosphere. 268:128780

    Article  CAS  PubMed  Google Scholar 

  24. Xavier BJ, Umesh N, Wang SF, Amalraj AJ (2021) CoFe2O4 supported g-C3N4 nanocomposite for sensitive electrochemical detection of dopamine. New J Chem

  25. Umesh NM, Jesila JA, Wang SF, Devi KS, Govindasamy M, Alothman AA, Alshgari RA (2021) An enhanced electrochemical performance of in milk, pigeon meat and eggs samples using se nanorods capped with Co3O4 nanoflowers decorated on graphene oxide. Colloids Surf B: Biointerfaces 200:111577

    Article  CAS  PubMed  Google Scholar 

  26. Sriram B, Baby JN, Hsu YF, Wang SF, Benadict Joseph X, George M, Veerakumar P, Lin KC (2021) MnCo2O4 Microflowers anchored on P-doped g-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl Electron Mater

  27. Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du AJ, Zhang WM, Zhu ZH, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen oxidation. J Am Chem Soc 133:20116–20119

    Article  CAS  PubMed  Google Scholar 

  28. Hu R, Wang X, Dai S, Shao D, Hayat T, Alsaedi A (2015) Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chem Eng J 260:469–477

    Article  CAS  Google Scholar 

  29. Kokulnathan T, Chen S-M (2019) Praseodymium Vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: the role of a synergistic electrocatalyst for the detection of metronidazole. ACS Appl Mater Interfaces 11:7893–7905

    Article  CAS  PubMed  Google Scholar 

  30. Umesh NM, rani KK, Devasenathipathy R, Sriram B, Liu Y-X, Wang S-F (2018) Preparation of Co-MOF derived Co(OH)2/multiwalled carbon nanotubes as an efficient bifunctional electro catalyst for hydrazine and hydrogen peroxide detections. Journal of the Taiwan Institute of Chemical Engineers 93:79–86

    Article  CAS  Google Scholar 

  31. He L, Li Z, Guo C, Hu B, Wang M, Zhang Z, Du M (2019) Bifunctional bioplatform based on NiCo Prussian blue analogue: label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensors Actuators B Chem 298:126852

    Article  CAS  Google Scholar 

  32. Zeng L, Xiao L, Shi X, Wei M, Cao J, Long Y (2019) Core-shell Prussian blue analogues @poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of rhodamine B with reduced metal leaching. J Colloid Interface Sci 534:586–594

    Article  CAS  PubMed  Google Scholar 

  33. Aller-Pellitero M, Fremeau J, Villa R, Guirado G, Lakard B, Hihn JY, del Campo FJ (2019) Electrochromic biosensors based on screen-printed Prussian blue electrodes. Sensors Actuators B Chem 290:591–597

    Article  CAS  Google Scholar 

  34. Bie X, Kubota K, Hosaka T, Chihara K, Komaba S (2018) Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J Power Sources 378:322–330

    Article  CAS  Google Scholar 

  35. Liu HY, Wen JJ, Huang ZH, Ma H, Xu HX, Qiu YB, Zhao WJ, Gu CC (2019) Prussian blue analogue of copper-cobalt decorated with multi-walled carbon nanotubes based electrochemical sensor for sensitive determination of nitrite in food samples. Chin J Anal Chem 47:19066–19072

    Article  Google Scholar 

  36. Li J, Jiang J, Zhao D, Xu Z, Liu M, Liu X, Tong H, Qian D (2020) Novel hierarchical sea urchin-like Prussian blue@palladium coreeshell heterostructures supported on nitrogen-doped reduced graphene oxide: facile synthesis and excellent guanine sensing performance. Electrochim Acta 330:135196

    Article  CAS  Google Scholar 

  37. Karikalan N, Velmurugan M, Chen SM, Chelladurai K (2016) A copper hexacyanocobaltate nanocubes based dopamine sensor in the presence of ascorbic acid. RSC Adv 6:48523–48529

    Article  CAS  Google Scholar 

  38. Wu Q, Wang P, Yang X, Wei M, Zhou M, Pu Y, Zhang M (2019) Fe-Co-Co Prussian blue analogues as a novel co-reaction accelerator for ultrasensitive electrochemiluminescent biosensor construction. Sensors Actuators B Chem 297:126767

    Article  CAS  Google Scholar 

  39. Li Y, Xu M, Li P, Dong J, Ai S (2014) Nonenzymatic sensing of methyl parathion based on graphene/gadolinium Prussian blue analogue nanocomposite modified glassy carbon electrode. Anal Methods 6:2157–2162

    Article  CAS  Google Scholar 

  40. Wi-Afedzi T, Yeoh FY, Yang MT, Yip ACK, Lin KYA (2019) A comparative study of hexacyanoferrate-based Prussian blue analogue nanocrystals for catalytic oxidation of 4-nitrophenol to 4-aminophenol. Sep Purif Technol 218:138–145

    Article  CAS  Google Scholar 

  41. Pi Y, Ma L, Zhao P, Cao Y, Gao H, Wang C, Li Q, Dong S, Sun J (2018) Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride. J Colloid Interface Sci 526:18–27

    Article  CAS  PubMed  Google Scholar 

  42. Umesh NM, Chen T-W, Chen S-M, rani KK, Devasenathipathy R, Wang S-F (2018) Phosphate-mediated silver nanodentrites modified glassy carbon electrode for the determination of nitrophenol. Int J Electrochem Sci 13:4946–4955

    Article  CAS  Google Scholar 

  43. (2020) Narasimha Murthy Umesh, Sea-Fue Wang, Karuppasamy Kohila Rani, Wei-Chih Pan, Electrochemical determination of Hg2+ in sakura shrimp and drinking water using f-CNF/TeO2 composite. J Mater Sci Mater Electron 31:12973–12982

  44. Umesh NM, Rani KK, Wang S-F, Sireesha P, Amalraj AJJ (2020) A novel amperometric determination of flufenamic acid using CuMOF ribbons incorporated with activated carbon. New J Chem 44:12586

    Article  CAS  Google Scholar 

  45. Umesh NM, Antolin Jesila J, Wang S-F, Yang NVY-J (2020) Novel voltammetric detection of norfloxacin in urine and blood serum using a flexible Ni foam based Ni-Co-MOF ultrathin nanosheets derived from Ni-Co-LDH. Microchem J:105747

  46. Tiwari M, Kumar A, Shankar U, Prakash R (2016) The nanocrystalline coordination polymer of AMT-Ag for an effective detection of ciprofloxacin hydrochloride in pharmaceutical formulation and biological fluid. Biosens Bioelectron 85:529–535

    Article  CAS  PubMed  Google Scholar 

  47. Hua JH, Jiao Y, Wang M, Yang YL (2018) Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent. Microchim Acta 185

  48. Liu BX, Huang YK, Shen Q, Zhu X, Hao YQ, Qu P, Xu MT (2016) Turn-on fluorescence detection of ciprofloxacin in tablets based on lanthanide coordination polymer nanoparticles. RSC Adv 6:100743–100747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Taipei University of Technology for financial aid and laboratory facility. This work was supported by the Ministry of Science and Technology (Special Research Project-MOST-108-2221-E-027-063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Fue Wang.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4.28 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umesh, N.M., Jesila, J.A.A. & Wang, SF. Amperometric detection of antibiotic drug ciprofloxacin using cobalt-iron Prussian blue analogs capped on carbon nitride. Microchim Acta 189, 31 (2022). https://doi.org/10.1007/s00604-021-05061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05061-z

Keywords

Navigation