Skip to main content
Log in

N, O-codoped hierarchical porous graphitic carbon for electrochemical immunosensing of Lactobacillus rhamnosus GG

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive label-free electrochemical immunosensor was fabricated for quantitative detection of Lactobacillus rhamnosus GG (LGG). The N/O co-doped three-dimensional hierarchical porous graphitic (THPG) carbon was synthesized by a one-step synthesis of polyaniline hydrogel, and followed by simple carbonization and chemical activation procedures. Because of the unique structure design, the obtained THPG carbon networks possess an ultra-large specific surface area of 4859 m2 g−1 along with a class of highly graphitic carbons. The results offer an enormous surface area and excellent electrical conductivity for label-free electrochemical immunosensing of probiotic L. rhamnosus strain. Under optimal conditions, the immunosensor showed a good linear relationship between peak current and concentration of LGG (R2 = 0.9976), with a detection limit of 2 CFU mL−1. Furthermore, this label-free immunosensor also shows good specificity, long-term stability, and reliability, and could be applied to detect probiotic LGG in dairy products and drinks with satisfactory results. The present protocol was shown to be quite promising for practical screening and functional evaluation of probiotic products containing LGG.

Graphical abstract

A ultrasensitive label-free electrochemical immunosensor based on THPG carbon was fabricated for detection of Lactobacillus rhamnosus GG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah B, Li B, Al Sabbah H, Xu W, Mraz J (2020) Effects of prebiotic dietary fibers and probiotics on human health: with special focus on recent advancement in their encapsulated formulations. Trends Food Sci Tech 102:178–192. https://doi.org/10.1016/j.tifs.2020.06.010

    Article  CAS  Google Scholar 

  2. Preidis G, Weizman A, Kashyap P, Morgan R (2020) AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology 159(2):708–738. https://doi.org/10.1053/j.gastro.2020.05.060

    Article  PubMed  Google Scholar 

  3. Freedman S, Williamson-Urquhart S, Farion K, Gouin S, Willan A, Poonai N, Hurley K, Sherman P, Finkelstein Y, Lee B (2018) Multicenter trial of a combination probiotic for children with gastroenteritis. New Engl J Med 379(21):2015–2026. https://doi.org/10.1056/NEJMoa1802597

    Article  CAS  PubMed  Google Scholar 

  4. Sireswar S, Biswas S, Dey G (2020) Adhesion and anti-inflammatory potential of lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 11(3):2555–2572. https://doi.org/10.1039/c9fo02249j

    Article  CAS  PubMed  Google Scholar 

  5. Capurso L (2019) Thirty years of lactobacillus rhamnosus GG: a review. J Clin Gastroenterol 53:S1–S41. https://doi.org/10.1097/MCG.0000000000001170

    Article  CAS  PubMed  Google Scholar 

  6. Yang Z, Wei Y, Rao S, Gao L, Yin Y, Xue F, Fang W, Gu R, Jiao X (2016) Immunomagnetic separation combined with colony immunoblotting for selective enrichment and detection of piliated lactobacillus rhamnosus strains. J Appl Microbiol 121(5):1406–1415. https://doi.org/10.1111/jam.13275

    Article  CAS  PubMed  Google Scholar 

  7. Douillard FP, Ribbera A, Jarvinen HM, Kant R, Pietila TE, Randazzo C, Paulin L, Laine PK, Caggia C, Ossowski V, Reunanen J (2013) Comparative genomic and functional analysis of lactobacillus casei and lactobacillus rhamnosus strains marketed as probiotics. Appl. Environ. Microb. 79(6):1923–1933. https://doi.org/10.1128/AEM.03467-12

    Article  CAS  Google Scholar 

  8. Von Ossowski I, Reunanen J, Satokari R, Vesterlun S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, Vos W, Palva A (2010) Mucosal adhesion properties of the probiotic lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl. Environ. Microb. 76(7):2049–2057. https://doi.org/10.1128/AEM.01958-09

    Article  CAS  Google Scholar 

  9. Reunanen J, Von Ossowski I, Hendrickx A, Palva A, Vos W (2012) Characterization of the SpaCBA pilus fibers in the probiotic lactobacillus rhamnosus GG. Appl Environ Microb 78(7):2337–2344. https://doi.org/10.1128/AEM.07047-11

    Article  CAS  Google Scholar 

  10. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I, Reunanen J, Palva A, de Vos WM, De Keersmaecker SC (2012) Functional analysis of lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microb. 78(1):185–193. https://doi.org/10.1128/AEM.06192-11

    Article  CAS  Google Scholar 

  11. Xue Y, Jiang D, Hu Q, Rao S, Gao L, Yang Z (2019) Electrochemical magnetic bead-based immunosensor for rapid and quantitative detection of probiotic lactobacillus rhamnosus in dairy products. Food Anal Method 12(5):1197–1207. https://doi.org/10.1007/s12161-019-01457-z

    Article  Google Scholar 

  12. Akanny E, Bonhommé A, Commun C, Doleans-Jordheim A, Bessueille F, Bourgeois S, Bordes C (2019) Development of uncoated near-spherical gold nanoparticles for the label-free quantification of lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 411(21):5563–5576. https://doi.org/10.1007/s00216-019-01938-4

    Article  CAS  PubMed  Google Scholar 

  13. Marcos-Fernández R, Ruiz L, Blanco-Míguez A, Margolles A, Sánchez B (2020) Cell wall hydrolase as a surface-associated protein target for the specific detection of lactobacillus rhamnosus using flow cytometry. Innov Food Sci Emerg 59:102240. https://doi.org/10.1016/j.ifset.2019.102240

    Article  CAS  Google Scholar 

  14. Gracias K, McKillip J (2004) A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol 50(11):883–890. https://doi.org/10.1139/W04-080

    Article  CAS  PubMed  Google Scholar 

  15. Pang B, Zhao C, Li L, Song X, Xu K, Wang J, Liu Y, Fu K, Bao H, Song D (2018) Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection. Anal Biochem 542:58–62. https://doi.org/10.1016/j.ab.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  16. Shih C, Chang C, Hsu M, Lin J, Kuan C, Wang H, Huang C, Chung M, Huang K, Hsu C (2015) Paper-based ELISA to rapidly detect Escherichia coli. Talanta 145:2–5. https://doi.org/10.1016/j.talanta.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  17. Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106(2):506–514. https://doi.org/10.1111/j.1365-2672.2008.04018.x

    Article  CAS  PubMed  Google Scholar 

  18. Okai C, Itani Y, Furuta A, Mizunoe Y, Iwase T (2019) Rapid identification and quantification of lactobacillus rhamnosus–targeting real-time PCR using a TaqMan probe. Jpn J Infect Dis 72:323–325. https://doi.org/10.7883/yoken.JJID.2019.102

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Zou S, Cao X (2017) A simple dendrimer-aptamer based microfluidic platform for E. coli O157: H7 detection and signal intensification by rolling circle amplification. Sens. Actuators B Chem 251:976–984. https://doi.org/10.1016/j.snb.2017.05.146

    Article  CAS  Google Scholar 

  20. Wang H, Zhao Y, Bie S, Suo T, Jia G, Liu B, Ye R, Li Z (2019) Development of an electrochemical biosensor for rapid and effective detection of pathogenic Escherichia coli in licorice extract. Appl Sci-Basel 9(2):295. https://doi.org/10.3390/app9020295

    Article  CAS  Google Scholar 

  21. Zhu F, Zhao G, Dou W (2018) A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157: H7 using au@Pt and graphene. Anal Biochem 559:34–43. https://doi.org/10.1016/j.ab.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, Zhao G, Dou W (2018) Electrochemical sandwich immunoassay for Escherichia coli O157: H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active au@Pt core/shell nanoparticles. Microchim Acta 185(10):455. https://doi.org/10.1007/s00604-018-2984-2

    Article  CAS  Google Scholar 

  23. Jijie R, Kahlouche K, Barras A, Yamakawa N, Bouckaert J, Gharbi T, Szunerits S, Boukherroub R (2018) Reduced graphene oxide/polyethylenimine based immunosensor for the selective and sensitive electrochemical detection of uropathogenic Escherichia coli. Sens. Actuators B Chem. 260:255–263. https://doi.org/10.1016/j.snb.2017.12.169

    Article  CAS  Google Scholar 

  24. Wang H, Xiu Y, Chen Y, Sun L, Yang L, Chen H, Niu X (2019) Electrochemical immunosensor based on an antibody-hierarchical mesoporous SiO2 for the detection of Staphylococcus aureus. RSC Adv 9(28):16278–16287. https://doi.org/10.1039/c9ra00907h

    Article  CAS  Google Scholar 

  25. Bekir K, Barhoumi H, Braiek M, Chrouda A, Zine N, Abid N, Maaref A, Bakhrouf A, Ouada H, Jaffrezic-Renault N (2015) Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environ Sci Pollut R 22(20):15796–15803. https://doi.org/10.1007/s11356-015-4761-7

    Article  CAS  Google Scholar 

  26. Chiriacò M, Parlangeli I, Sirsi F, Poltronieri P, Primiceri E (2018) Impedance sensing platform for detection of the food pathogen listeria monocytogenes. Electronics-Switz 7(12):347. https://doi.org/10.3390/electronics7120347

    Article  CAS  Google Scholar 

  27. Mantzila A, Maipa V, Prodromidis M (2008) Development of a faradic impedimetric immunosensor for the detection of salmonella typhimurium in milk. Anal Chem 80(4):1169–1175. https://doi.org/10.1021/ac071570l

    Article  CAS  PubMed  Google Scholar 

  28. Dutta S, Bhaumik A, Wu K (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592. https://doi.org/10.1039/c4ee01075b

    Article  CAS  Google Scholar 

  29. Pan L, Yu G, Zhai D, Lee H, Zhao W, Liu N, Wang H, Tee B, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. P. Natl. Acad. Sci. USA. 109:(24):9287-9292. 10.1073/pnas.1202636109

  30. To J, Chen Z, Yao H, He J, Kim K, Chou H, Pan L, Wilcox J, Cui Y, Bao Z (2015) Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. Acs Central Sci 1(2):68–76. https://doi.org/10.1021/acscentsci.5b00149

    Article  CAS  Google Scholar 

  31. Huang Y, Zhu F, Guan J, Wei W, Zou L (2021) Label-free amperometric immunosensor based on versatile carbon nanofibers network coupled with au nanoparticles for aflatoxin B1 detection. Biosensors-Basel 11(1):5. https://doi.org/10.3390/bios11010005

    Article  CAS  Google Scholar 

  32. Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C (2020) Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal Chem 92(19):13518–13524. https://doi.org/10.1021/acs.analchem.0c02982

    Article  CAS  PubMed  Google Scholar 

  33. Riaz M, Yuan Z, Mahmood A, Liu F, Sui X, Chen J, Huang Q, Liao X, Wei L, Chen Y (2020) Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sens. Actuators B Chem. 319:128243. https://doi.org/10.1016/j.snb.2020.128243

    Article  CAS  Google Scholar 

  34. Wang Y, Qiao M, Mamat X (2021) Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance. Appl Surf Sci 540:148352. https://doi.org/10.1016/j.apsusc.2020.148352

    Article  CAS  Google Scholar 

  35. Zhang W, Wu Z, Jiang H, Yu S (2014) Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J Am Chem Soc 136(41):14385–14388. https://doi.org/10.1021/ja5084128

    Article  CAS  PubMed  Google Scholar 

  36. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504. https://doi.org/10.1039/c3ee41638k

    Article  CAS  Google Scholar 

  37. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729–762. https://doi.org/10.1039/c5ee03109e

    Article  CAS  Google Scholar 

  38. Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24(33):4473–4498. https://doi.org/10.1002/adma.201201715

    Article  CAS  PubMed  Google Scholar 

  39. Ma Z, Shi W, Yan K, Pan L, Yu G (2019) Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chem Sci 10(25):6232–6244. https://doi.org/10.1039/c9sc02033k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G (2018) Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater 30(18):1800124. https://doi.org/10.1002/adma.201800124

    Article  CAS  Google Scholar 

  41. To J, He J, Mei J, Haghpanah R, Chen Z, Kurosawa T, Chen S, Bae W, Pan L, Tok J (2016) Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J Am Chem Soc 138(3):1001–1009. https://doi.org/10.1021/jacs.5b11955

    Article  CAS  PubMed  Google Scholar 

  42. Silva R, Voiry D, Chhowalla M, Asefa T (2013) Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N-and O-doped mesoporous carbons. J Am Chem Soc 135(21):7823–7826. https://doi.org/10.1021/ja402450a

    Article  CAS  PubMed  Google Scholar 

  43. Niu J, Liang J, Shao R, Liu M, Dou M, Li Z, Huang Y, Wang F (2017) Tremella-like N. O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors Nano Energy 41:285–292. https://doi.org/10.1016/j.nanoen.2017.09.041

    Article  CAS  Google Scholar 

  44. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4(16):5973–5983. https://doi.org/10.1039/c6ta01821a

    Article  CAS  Google Scholar 

  45. Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H, Abbaspourrad A, Agarwal S, Gupta V (2019) A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens Actuators B Chem 284:568–574. https://doi.org/10.1016/j.snb.2018.12.164

    Article  CAS  Google Scholar 

  46. Atchudan R, Muthuchamy N, Edison T, Perumal S, Vinodh R, Park K, Lee Y (2019) An ultrasensitive photoelectrochemical biosensor for glucose based on bio-derived nitrogen-doped carbon sheets wrapped titanium dioxide nanoparticles. Biosens Bioelectron 126:160–169. https://doi.org/10.1016/j.bios.2018.10.049

    Article  CAS  PubMed  Google Scholar 

  47. Yang Z, Xue Y, Rao S, Zhang M, Gao L, Yin Y, Chen D, Zhou X, Jiao X (2017) Isolation of probiotic piliated lactobacillus rhamnosus strains from human fecal microbiota using SpaA antiserum-based colony immunoblotting. J Microbiol Biotechnol 27(11):1971–1982. https://doi.org/10.4014/jmb.1705.05055

    Article  CAS  PubMed  Google Scholar 

  48. Guo Z, Wang F, Xia Y, Li J, Tamirat A, Liu Y, Wang L, Wang Y, Xia Y (2018) In situ encapsulation of core–shell-structured co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J Mater Chem A 6(4):1443–1453. https://doi.org/10.1039/d0ta90204g

    Article  CAS  Google Scholar 

  49. Balasubramanian P, Balamurugan T, Chen S, Chen T, Sathesh T (2018) Rational design of cu@Cu2O nanospheres anchored B, N co-doped mesoporous carbon: a sustainable electrocatalyst to assay eminent neurotransmitters acetylcholine and dopamine. ACS Sustain Chem Eng 7(6):5669–5680. https://doi.org/10.1021/acssuschemeng.8b04473

    Article  CAS  Google Scholar 

  50. Zhu Y, Murali S, Stoller M, Ganesh K, Cai W, Ferreira P, Pirkle A, Wallace R, Cychosz K, Thommes M (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541. https://doi.org/10.1126/science.1200770

    Article  CAS  PubMed  Google Scholar 

  51. Lan Q, Shen H, Li J, Ren C, Hu X, Yang Z (2020) Facile synthesis of novel reduced graphene oxide@polystyrene nanospheres for sensitive label-free electrochemical immunoassary. 56:699-702 https://doi.org/10.1039/c9cc07934c

  52. Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X (2017) Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosens Bioelectron 89:312–318. https://doi.org/10.1016/j.bios.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  53. Zou Y, Jing L, Zhe S, Kraatzb H (2018) Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of E.coli K12. Talanta 193:15–22. https://doi.org/10.1016/j.talanta.2018.09.068

    Article  CAS  PubMed  Google Scholar 

  54. Bhardwaj J, Devarakonda S, Kumar S, Jang J (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sens. Actuators B Chem. 253:115–123. https://doi.org/10.1016/j.snb.2017.06.108

    Article  CAS  Google Scholar 

  55. Villalonga M, Borisova B, Arenas C, Villalonga A, Arevalo-Villena M, Sanchez A, Pingarron J, Briones-Perez A, Villalonga R (2019) Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core-shell magnetic nanoparticles. Sensor Actuat B-Chem 279:15–21. https://doi.org/10.1016/j.snb.2018.09.092

    Article  CAS  Google Scholar 

  56. Freitas M, Viswanathan S, Nouws H, Oliveira M, Delerue-Matos C (2014) Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of salmonella typhimurium. Biosens Bioelectron 51(1):195–200. https://doi.org/10.1016/j.bios.2013.07.048

    Article  CAS  PubMed  Google Scholar 

  57. Francesca M, Roberto P, Donatella A (2018) Sensitive detection of Escherichia coli O157:H7 in food products by impedimetric immunosensors. Sensors 18(7):2168. https://doi.org/10.3390/s18072168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Much thanks to The Testing Center of Yangzhou University due to all the characterization.

Funding

The funding of this work was provided by Natural Science Foundation of Jiangsu Province (No. BK20180922 and BK20190890), Natural science fund for colleges and universities in Jiangsu Province (No. 19KJB550002), State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS2001), Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenquan Yang or Zhanjun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, J., Du, Y. et al. N, O-codoped hierarchical porous graphitic carbon for electrochemical immunosensing of Lactobacillus rhamnosus GG. Microchim Acta 189, 5 (2022). https://doi.org/10.1007/s00604-021-05049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05049-9

Keywords

Navigation