Skip to main content

Advertisement

Log in

Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A proof-of-principle concept for free-electrodeposited anodic stripping voltammetry (ASV) sensing of Cu2+ is proposed by using Ti3C2Tx MXene/carbon black (Ti3C2Tx@CB) nanohybrids as electrode materials. Owing to the high adsorption and reduction capability of Ti3C2Tx towards Cu2+, Ti3C2Tx MXene enables Cu2+ to be immobilized and self-reduced directly to form Cu0 on the Ti3C2Tx@CB electrode surface. As a result an oxidation peak current appears from the re-oxidation of Cu0 via differential pulse voltammetry. Carbon black (CB) was introduced to prevent Ti3C2Tx Mxene aggregation and improve the related electron transfer as well as enhance their surface area. After optimizing various conditions, a considerable low limit of detection (4.6 nM) and a wide linear range (0.01–15.0 μM) for Cu2+ were achieved at the working potential from − 0.3 V to 0.0 V (vs SCE). Relative standard deviation (RSD) of eight individual Ti3C2Tx@CB electrodes is 3.72%, and the recoveries from tap water sample and lake water sample were in the ranges of 97.0–108% and 104–107%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Z, Gong L, Zeng H, Yang T, Luo X (2021) A novel ratiometric electrochemical cupric ion sensing strategy based on unmodified electrode. Anal Chim Acta 1146:11–16

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Han Y, Zhao F, Shi G, Tian Y (2015) A selective and accurate ratiometric electrochemical biosensor for monitoring of Cu2+ ions in a rat brain. Anal Chem 87:2931–2936

    Article  CAS  PubMed  Google Scholar 

  3. Liang Y, Liu Y, Guo X, Ye P, Wen Y, Yang H (2014) Phytate functionalized multi-walled carbon nanotubes modified electrode for determining trace Cu(II) using differential normal pulse anodic stripping voltammetry. Sens Actuators B Chem 201:107–113

    Article  CAS  Google Scholar 

  4. Yu J, Zhang X, Zhao M, Ding Y, Li Z, Ma Y, Li H, Cui H (2021) Fabrication of the Ni-based composite wires for electrochemical detection of copper(II) ions. Anal Chim Acta 1143:45–52

    Article  CAS  PubMed  Google Scholar 

  5. Xu Z, Meng Q, Cao Q, Xiao Y, Liu H, Han G, Wei S, Yan J, Wu L (2020) Selective sensing of copper ions by mesoporous porphyrinic metal–organic framework nanoovals. Anal Chem 92:2201–2206

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Liu G, Qi Y, Yuan Y, Gao J, Luo X, Yang T (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 91:12006–12013

    Article  CAS  PubMed  Google Scholar 

  7. Hu R, Zhang X, Chi K-N, Yang T, Yang Y-H (2020) Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl Mater Interfaces 12:30770–30778

    Article  CAS  PubMed  Google Scholar 

  8. Zhu X, Liu B, Hou H, Huang Z, Zeinu KM, Huang L, Yuan X, Guo D, Hu J, Yang J (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta 248:46–57

    Article  CAS  Google Scholar 

  9. Wang X, Qi Y, Shen Y, Yuan Y, Zhang L, Zhang C, Sun Y (2020) A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors Actuators B Chem 310:127756

    Article  CAS  Google Scholar 

  10. Romele P, Gkoupidenis P, Koutsouras DA, Lieberth K, Kovács-Vajna ZM, Blom PWM, Torricelli F (2020) Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat Commun 11:3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TPEA hybridized surface. Anal Chem 85:418–425

    Article  CAS  PubMed  Google Scholar 

  12. Yi W, He Z, Fei J, He X (2019) Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC Adv 9:17325–17334

    Article  CAS  Google Scholar 

  13. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen S-W, Wang J (2018) Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal Ions. Anal Chem 91:888–895

    Article  PubMed  Google Scholar 

  14. Zhou J, Sun G, Pan J, Pan Y, Wang S, Zhai H (2019) A nanocomposite consisting of ionic liquid-functionalized layered Mg(II)/Al(III) double hydroxides for simultaneous electrochemical determination of cadmium(II), copper(II), mercury(II) and lead(II). Microchim Acta 186:767

    Article  CAS  Google Scholar 

  15. Guo Q, Zhang X, Zhao F, Song Q, Su G, Tan Y, Tao Q, Zhou T, Yu Y, Zhou Z, Lu C (2020) Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14:2788–2797

    Article  CAS  PubMed  Google Scholar 

  16. Wu L, Lu X, Dhanjai W-S, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75

    Article  CAS  PubMed  Google Scholar 

  17. Yi Y, Ma Y, Ai F, Xia Y, Lin H, Zhu G (2021) Novel methodology for anodic stripping voltammetric sensing of heavy-metal ions using Ti3C2Tx nanoribbons. Chem Commun 57:7790–7793

    Article  CAS  Google Scholar 

  18. Kalambate PK, Dhanjai SA, Li Y, Shen Y, Huang Y (2020) An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim Acta 187:402

    Article  CAS  Google Scholar 

  19. Zhang Y, Jiang X, Zhang J, Zhang H, Li Y (2019) Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 130:315–321

    Article  CAS  PubMed  Google Scholar 

  20. Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, Qu F, Huang X, Lu L (2020) Mxene/carbon nanohorn/β-cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal Hazard Mater 396:122776

    Article  CAS  Google Scholar 

  21. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for gighly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92:5546–5553

    Article  CAS  PubMed  Google Scholar 

  22. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, Patil VR, Huang Y (2019) Recent advances in MXene–based electrochemical sensors and biosensors. Trends Anal Chem 120:115643

  23. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee M-H (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 159:112208

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Zhao Y, Guo X, Chen C, Dong C-L, Liu R-S, Han C-P, Li Y, Gogotsi Y, Wang G (2018) Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 1:985–992

    Article  CAS  Google Scholar 

  25. Zhu X, Liu B, Li L, Wu L, Chen S, Huang L, Yang J, Liang S, Xiao K, Hu J, Hou H (2019) A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(II), cadmium(II) and zinc(II). Microchim Acta 186:776

    Article  CAS  Google Scholar 

  26. Yao Y, Lan L, Liu X, Ying Y, Ping J (2020) Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens Bioelectron 148:111799

    Article  CAS  PubMed  Google Scholar 

  27. Sinha A, Dhanjai ZH, Huang Y, Lu X, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  28. Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X (2018) Stretchable Ti3C2Tx MXene/Carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12:56–62

    Article  CAS  PubMed  Google Scholar 

  29. Cheng R, Hu T, Hu M, Li C, Liang Y, Wang Z, Zhang H, Li M, Wang H, Lu H, Fu Y, Zhang H, Yang Q-H, Wang X (2020) MXenes induce epitaxial growth of size-controlled noble nanometals: a case study for surface enhanced Raman scattering (SERS). J Mater Sci Technol 40:119–127

    Article  Google Scholar 

  30. Wang Y, Wang S, Dong N, Kang W, Li K, Nie Z (2020) Titanium carbide MXenes mediated In situ reduction allows label-free and visualized nanoplasmonic sensing of silver ions. Anal Chem 92:4623–4629

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Li H, Zou G, Fernandez C, Liu B, Zhang Q, Hu J, Peng Q (2016) Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain Chem Eng 4:6763–6771

    Article  CAS  Google Scholar 

  32. Kubendhiran S, Sakthivel R, Chen S-M, Mutharani B, Chen T-W (2018) Innovative strategy based on a novel carbon-Black−β-Cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental pollutant 4-nitrophenol. Anal Chem 90:6283–6291

    Article  CAS  PubMed  Google Scholar 

  33. Silva TA, Moraes FC, Janegitz BC (2017) Fatibello-Filho O (2017) Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater 2017(2017-6–5):14

    Google Scholar 

  34. Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O (2015) Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 157:125–133

    Article  CAS  Google Scholar 

  35. Yin M, Huang Y, Li Q, Jensen JO, Cleemann LN, Zhang W, Bjerrum NJ, Xing W (2014) Phosphate-doped carbon black as Pt catalyst support: Co-catalytic functionality for dimethyl ether and methanol electro-oxidation. ChemElectroChem 1:448–454

    Article  Google Scholar 

  36. Amin RS, Abdel Hameed RM, El-Khatib KM, Elsayed Youssef M (2014) Electrocatalytic activity of nanostructured Ni and Pd–Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium. Int J Hydrogen Energy 39:2026–2041

    Article  CAS  Google Scholar 

  37. Wu H, Almalki M, Xu X, Lei Y, Ming F, Mallick A, Roddatis V, Lopatin S, Shekhah O, Eddaoudi M, Alshareef HN (2019) MXene derived metal-organic frameworks. J Am Chem Soc 141:20037–20042

    Article  CAS  PubMed  Google Scholar 

  38. Han J, Yu J, Guo Y, Wang L, Song Y (2020) COFBTLP-1/three-dimensional macroporous carbon electrode for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+ and Hg2+. Sensors Actuators B Chem 321:128498

    Article  CAS  Google Scholar 

  39. Duan S, Huang Y (2017) Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J Electroanal Chem 807:253–260

    Article  CAS  Google Scholar 

  40. Deshmukh MA, Celiesiute R, Ramanaviciene A, Shirsat MD, Ramanavicius A (2018) EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim Acta 259:930–938

    Article  CAS  Google Scholar 

  41. Cui X, Fang X, Zhao H, Li Z, Ren H (2018) Fabrication of thiazole derivatives functionalized graphene decorated with fluorine, chlorine and iodine@SnO2 nanoparticles for highly sensitive detection of heavy metal ions. Colloids Surf A 546:153–162

    Article  CAS  Google Scholar 

  42. Wan H, Sun Q, Li H, Sun F, Hu N, Wang P (2015) Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sensors Actuators B Chem 209:336–342

    Article  CAS  Google Scholar 

  43. Gan X, Zhao H, Chen S, Yu H, Quan X (2015) Three-dimensional porous HxTiS2 nanosheet-polyaniline nanocomposite electrodes for directly detecting trace Cu(II) ions. Anal Chem 87:5605–5613

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Project of Faculty of Agricultural Equipment of Jiangsu University (NZXB20200213), the Open Project Program of Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education (No. FS2008, FS2009), the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University (Grant No. MJUKF-FMSM202008), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Technology and Material of Water Treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangbing Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yixuan Xia and Yuzhi Ma are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 873 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Ma, Y., Wu, Y. et al. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black. Microchim Acta 188, 377 (2021). https://doi.org/10.1007/s00604-021-05042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05042-2

Keywords

Navigation