Skip to main content
Log in

Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2–1000 µM (guanine; (G)), 0.1–500 µM (adenine (A)), 0.25–250 µM (thymine (T)) and 0.15–500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%–2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%–2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60–99.11%, 97.80–99.21%, and 98.69–99.74%, respectively).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Lavanya N, Claude JN, Sekar C (2018) Electrochemical determination of purine and pyrimidine bases using copper doped cerium oxide nanoparticles. J Colloid Interface Sci 530:202–211

    Article  CAS  Google Scholar 

  3. Yari A, Saidikhah M (2016) Trithiane silver-nanoparticles-decorated polyaniline nanofibers as sensing element for electrochemical determination of Adenine and Guanine in DNA. J Electroanal Chem 783:288–294

    Article  CAS  Google Scholar 

  4. Li T, Li B, Dong S (2007) Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Anal Bioanal Chem 389:887–893

    Article  CAS  Google Scholar 

  5. Qian Y, Fan T, Yao Y, Shi X, Liao X, Zhou F, Gao F (2018) Label-free and Raman dyes-free surface-enhanced Raman spectroscopy for detection of DNA. Sens Actuators B Chem 254:483–489

    Article  CAS  Google Scholar 

  6. Doshi R, Day PJR, Carampin P, Blanch E, Stratford IJ, Tirelli N (2010) Spectrophotometric analysis of nucleic acids: oxygenation-dependant hyperchromism of DNA. Anal Bioanal Chem 396:2331–2339

    Article  CAS  Google Scholar 

  7. Fujimura YK, Komatsu Y, Kuraishi H, Kaneko T (1984) Estimation of DNA base composition by high performance liquid chromatography of its nuclease pi hydrolysate. Agric BioI Chem 48:3169–3172

    Google Scholar 

  8. Rehman A, Jenner A, Halliwell B (2000) Gas chromatography-mass spectrometry analysis of DNA: optimization of protocols for isolation and analysis of DNA from human blood. Methods Enzymol 319:401–417

    Article  CAS  Google Scholar 

  9. Yeh CF, Jiang SJ (2002) Determination of monophosphate nucleotides by capillary electrophoresis inductively coupled plasma mass spectrometry. Analyst 127:1324–1327

    Article  CAS  Google Scholar 

  10. Brooks SC, Richter MM (2002) Determination of DNA bases using electrochemistry: a discovery-based experiment. Chem Educat 7:284–287

    Article  CAS  Google Scholar 

  11. Sadeghi M, Jahanshahi M, Javadian H (2020) Highly sensitive biosensor for detection of DNA nucleobases: enhanced electrochemical sensing based on polyaniline/single-layer MoS2 nanosheets nanocomposite modified carbon paste electrode. Microchem J. 152:104315

    Article  CAS  Google Scholar 

  12. Lei P, Zhou Y, Zhu R, Liu Y, Dong C, Shuang S (2020) Novel strategy of electrochemical analysis of DNA bases with enhanced performance based on copper nickel nanosphere decorated N, B doped reduced graphene oxide. Biosens Bioelectron 147:111735

    Article  CAS  Google Scholar 

  13. Wang S, Ferrag C, Noroozifar M, Kerman K (2020) Simultaneous determination of four DNA bases at graphene oxide/multi-walled carbon nanotube nanocomposite-modified electrode. Micromachines 11:294

    Article  Google Scholar 

  14. Wang X, Zhang J, Wei Y, Xing T, Cao T, Wu S, Zhu F (2020) A copper-based metal–organic framework/graphene nanocomposite for the sensitive and stable electrochemical detection of DNA bases. Analyst 145:1933–1942

    Article  CAS  Google Scholar 

  15. Deng C, Xia Y, Xiao C, Nie Z, Yang M, Si S (2012) Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens and Bioelectron 31:469–474

    Article  CAS  Google Scholar 

  16. Wang L, Yu F, Wang F, Chen Z (2016) Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin. J Solid State Electrochem 20:1263–1270

    Article  CAS  Google Scholar 

  17. Wu K, Fei J, Bai W, Hu S (2003) Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376:205–209

    Article  CAS  Google Scholar 

  18. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  19. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270

    Article  CAS  Google Scholar 

  20. Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A (2020) One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities. Sci Rep 10:1762

    Article  CAS  Google Scholar 

  21. Lu L, Hu X, Zhu Z, Li D, Tian S, Chen Z (2020) Review-Electrochemical sensors and biosensors modified with binary nanocomposite for food safety. J Electrochem Soc 167:037512

    Article  CAS  Google Scholar 

  22. Manojkumar K, Sivaramakrishna A, Vijayakrishna K (2016) A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). J Nanopart Res 18:103

    Article  Google Scholar 

  23. Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S (2020) Noble metal nanostructured materials for chemical and biosensing systems. Nanomater 10:209

    Article  Google Scholar 

  24. Xie F, Yang M, Jiang M, Huang XJ, Liu WQ, Xie PH (2019) Carbon-based nanomaterials A promising electrochemical sensor toward persistent toxic substance. Trends Anal Chem 119:115624

    Article  CAS  Google Scholar 

  25. Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    Article  CAS  Google Scholar 

  26. Liu CS, Li J, Pang H (2020) Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 410:213222

    Article  CAS  Google Scholar 

  27. Zhang J, Tan Y, Song WJ (2020) Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Microchim Acta 187:234

    Article  CAS  Google Scholar 

  28. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D (2020) Covalent organic frameworks: design, synthesis, and functions. Chem Rev 120:8814–8933

    Article  CAS  Google Scholar 

  29. Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28:1705553

    Article  Google Scholar 

  30. Gomes R, Bhanja P, Bhaumik A (2015) A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem Commun 51:10050–10053

    Article  CAS  Google Scholar 

  31. Sayyah SM, Khaliel AB, Aboud AA, Mohamed SM (2014) Chemical polymerization kinetics of poly-o-phenylenediamine and characterization of the obtained polymer in aqueous hydrochloric acid solution using K2Cr2O7 as oxidizing agent. Int J Polym Sci 16:520910

    Google Scholar 

  32. Qu F, Yan H, Li K, You J (2020) Han W (2020) A covalent organic framework–MnO2 nanosheet system for determination of glutathione. J Mater Sci 55:10022–10034

    Article  CAS  Google Scholar 

  33. Pareek K, Rohana R, Cheng H (2015) Polymeric organo–magnesium complex for room temperature hydrogen physisorption. RSC Adv 5:10886–10891

    Article  CAS  Google Scholar 

  34. Arul P, John SA (2017) Silver nanoparticles built-in zinc metal organic framework modified electrode for the selective non-enzymatic determination of H2O2. Electrochimi Acta 235:680–689

    Article  CAS  Google Scholar 

  35. Arul P, Narayanamoorthi E, John SA (2020) Covalent organic framework film as an effective electrocatalyst for the simultaneous determination of dihydroxybenzene isomers in water samples. Sens Actuators B Chem 313:128033

    Article  CAS  Google Scholar 

  36. Ouyang X, Luo L, Ding Y, Liu B, Xu D (2014) Simultaneous determination of purine and pyrimidine bases in DNA using poly(3,4-ethylenedioxythiophene)/graphene composite film. J Electroanal Chem 735:51–56

    Article  CAS  Google Scholar 

  37. Xu Q, Liu X, Li H, Yin L, Hu X (2013) Electrochemical determination of purine and pyrimidine DNA bases based on the recognition properties of azocalix[4]arene. Biosens Bioelectron 42:355–361

    Article  Google Scholar 

  38. Ren S, Wang H, Zhang H, Yu L, Li M, Li M (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. J Electroanal Chem 750:65–73

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the Ministry of Science and Technology, Taiwan (MOST-107–2113-M-027–006 and MOST-108–2113-M-027–001). P. Arul would like to express gratitude to the National Taipei University of Technology for the Post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul, P., Huang, ST., Gowthaman, N.S.K. et al. Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework. Microchim Acta 188, 358 (2021). https://doi.org/10.1007/s00604-021-05021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05021-7

Keywords

Navigation