Skip to main content

Advertisement

Log in

Metal–organic framework modified by silver nanoparticles for SERS-based determination of sildenafil and pioglitazone hydrochloride

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A versatile surface-enhanced Raman scattering (SERS) assay has been established that can realize rapid and sensitive determination of sildenafil (SIL) and pioglitazone hydrochloride (PIO) adulteration in healthcare products. Metal–organic frameworks-silver nanoparticles (MOFs-AgNPs) with SERS activity were successfully prepared via in situ synthesis AgNPs on the MOFs surface. By virtue of the adsorptivity of MOFs, the MOFs-AgNPs could effectively concentrate the drug molecules on the electromagnetic enhancement areas of AgNPs. Moreover, the MOFs-AgNPs substrate exhibited more sensitive SERS activity than classical AgNPs with linear range of 1.0 × 10–7–1.0 × 10–5 mol L−1 for SIL and 8.0 × 10–7–3.0 × 10–5 mol L−1 for PIO and limit of detection (LOD) of 4.8 × 10–8 mol L−1 for SIL and 1.4 × 10–7 mol L−1 for PIO. The designed method realized the determination of SIL and PIO in commercial tablets and healthcare products with recoveries of 93.8–108.0% and 93.0–104.0%, respectively, with relative standard deviation (RSD) of 2.7–4.1% and 2.2–4.2%, respectively. The present system displayed little interference effect on determination. This work provides a multifunctional route for the determination of other drugs via the SERS technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh S, Prasad B, Savaliya AA, Shah RP, Gohil VM, Kaur A (2009) Strategies for characterizing sildenafil, vardenafil, tadalafil and their analogues in herbal dietary supplements, and detecting counterfeit products containing these drugs. TrAC Trends Anal Chem 28(1):13–28

    Article  CAS  Google Scholar 

  2. Huang AC, Kuei-Ying Y, Cheng YY, Navneet D, Allen C, Tung-Hu T (2018) Investigation of interactive activity of electro-acupuncture on pharmacokinetics of sildenafil and their synergistic effect on penile blood flow in rats. Int J Mol Sci 19(8):2153

    Article  Google Scholar 

  3. Chen Y, Liang D, Ling L, Ma J, Geng X, Xun Y, Liu Z, Xin S (2017) Cancer risk of sulfonylureas in patients with type 2 diabetes mellitus: A systematic review. J. Diabetes 9(5):482–494

  4. Pavasini R, Camici PG, Crea F, Danchin N, Fox K, Manolis AJ, Marzilli M, Rosano GMC, Lopez-Sendon JL, Pinto F, Balla C, Ferrari R (2019) Anti-anginal drugs: systematic review and clinical implications. Int J Cardiol 283:55–63

    Article  Google Scholar 

  5. Berzas JJ, Rodriguez J, Castañeda G, Villaseñor MJ (2000) Voltammetric behavior of sildenafil citrate (Viagra) using square wave and adsorptive stripping square wave techniques: Determination in pharmaceutical products. Anal Chim Acta 417(2):143–148

    Article  CAS  Google Scholar 

  6. Mostafa GA, Al-Majed A (2008) Characteristics of new composite- and classical potentiometric sensors for the determination of pioglitazone in some pharmaceutical formulations. J Pharm Biomed Anal 48(1):57–61

    Article  CAS  Google Scholar 

  7. Yilmaz E, Ulusoy Hİ, Demir Ö, Soylak M (2018) A new magnetic nanodiamond/graphene oxide hybrid (Fe3O4@ND@GO) material for pre-concentration and sensitive determination of sildenafil in alleged herbal aphrodisiacs by HPLC-DAD system. J Chromatogr B: Biomed Sci Appl 1084:113–121

    Article  CAS  Google Scholar 

  8. Mohamed AM, Ezzat AH, Mohamed HM, Abdel-Sattar KN (2018) High performance liquid chromatographic estimation of pioglitazone hydrochloride and losartan potassium. Main Group Chem 17(3):247–256

    Article  Google Scholar 

  9. Hegazy MA, El-Ghobashy MR, Yehia AM, Mostafa AA (2009) Simultaneous determination of metformin hydrochloride and pioglitazone hydrochloride in binary mixture and in their ternary mixture with pioglitazone acid degradate using spectrophotometric and chemometric methods. Drug Test Anal 1(7):339–349

    Article  CAS  Google Scholar 

  10. Zhu QX, Cao YB, Cao YY, Chai YF, Lu F (2014) Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements. Anal Bioanal Chem 406(7):1877–1884

    Article  CAS  Google Scholar 

  11. Minh DTC, Huyen NTT, Anh NTK, Ha PTT (2019) Detection of sildenafil adulterated in herbal products using thin layer chromatography combined with surface enhanced Raman spectroscopy: “Double coffee-ring effect” based enhancement. J Pharm Biomed Anal 174:340–347

    Article  CAS  Google Scholar 

  12. Alarfaj NA, Al-Abdulkareem EA, Aly FA (2011) Spectrofluorimetric determination of pioglitazone hydrochloride and glimepiride in their formulations and biological fluids. Asian J Chem 23(8):3441–3444

    CAS  Google Scholar 

  13. Tanaka S, Uchida S, Hakamata A, Miyakawa S, Odagiri K, Inui N, Watanabe H, Namiki N (2020) Simultaneous LC-MS analysis of plasma concentrations of sildenafil, tadalafil, bosentan, ambrisentan, and macitentan in patients with pulmonary arterial hypertension. Pharmazie 75(6):236–239

    CAS  PubMed  Google Scholar 

  14. Praveen DSS, Asha S, Kumar PR (2019) Simple and rapid liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the simultaneous determination of pioglitazone and glimepiride in human plasma. Curr Trends Biotechnol Pharm 13(2):190–198

    CAS  Google Scholar 

  15. Zhao H, Hasi WLJ, Bao L, Han SQGW, Sha XY, Sun J, Lou XT, Lin DY, Lv ZW (2017) Rapid detection of sildenafil drugs in liquid nutraceuticals based on surface-enhanced Raman spectroscopy technology. Chin J Chem 35(10):1522–1528

    Article  CAS  Google Scholar 

  16. Lin L, Qu FF, Nie PC, Zhang H, Chu BQ, He Y (2019) Rapid and Qqantitative determination of sildenafil in cocktail based on surface enhanced Raman spectroscopy. Molecules 24(9):1790

    Article  CAS  Google Scholar 

  17. Liu CY, Xu XH, Wang CD, Qiu GY, Ye WC, Li YM, Wang DG (2020) ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sens Actuators B Chem 307:127634

    Article  Google Scholar 

  18. Wu JW, Ma H, Bu XF, Ma C, Zhu L, Hao BQ, Zhao B, Tian Y (2019) SERS determination of the antihypertensive drugs prazosin and losartan by using silver nanoparticles coated with β-cyclodextrin. Microchim Acta 186(12):1–10

    Google Scholar 

  19. Kreno LE, Greeneltch NG, Farha OK, Hupp JT, Van Duyne RP (2014) SERS of molecules that do not adsorb on Ag surfaces: a metal-organic framework-based functionalization strategy. Analyst 139(16):4073–4080

    Article  CAS  Google Scholar 

  20. Xuan T, Gao Y, Cai YZ, Guo XY, Wen Y, Yang HF (2019) Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: an application for sensitive detection of thiabendazole. Sens Actuators B Chem 293:289–295

    Article  CAS  Google Scholar 

  21. Wu LL, Pu HB, Huang LJ, Sun DW (2020) Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chemistry 328:127105

    Article  CAS  Google Scholar 

  22. Lai HS, Li GK, Xu FG, Zhang ZM (2020) Metal-organic frameworks: opportunities and challenges for surface-enhanced Raman scattering-a review. J Mater Chem C 8(9):2952–2963

    Article  CAS  Google Scholar 

  23. Fu JT, Lai HS, Zhang ZM, Li GK (2021) UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples. Anal. Chim. Acta 116:338464

    Article  Google Scholar 

  24. Jiang ZW, Gao PF, Yang L, Huang CZ, Li YF (2015) Facile in situ synthesis of silver nanoparticles on the surface of metal-organic framework for ultrasensitive surface-enhanced Raman scattering detection of dopamine. Anal Chem 87(24):12177–12182

    Article  CAS  Google Scholar 

  25. Taylor-Pashow KM, Della Rocca J, Xie ZG, Tran S, Lin WB (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131(40):14261–14263

    Article  CAS  Google Scholar 

  26. Veisi H, Moradi SB, Saljooqi A, Safarimehr P (2019) Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. Mater Sci Eng C 100:445–452

    Article  CAS  Google Scholar 

  27. Chen LM, Liu YN (2011) Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. ACS Appl Mater Interfaces 3(8):3091–3096

    Article  CAS  Google Scholar 

  28. Hu H, Zhang HX, Chen YJ, Qu HS (2019) Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for organophosphate degradation in water. Environ Sci Pollut Res 26(24):24720–24732

    Article  CAS  Google Scholar 

  29. Rajesh S, Gunasekaran S, Rajesh P (2018) Vibrational and molecular structural investigations of pioglitazone-combined study of experimental and quantum chemical calculations (density functional theory). Int J ChemTech Res 11(10):111–125

  30. Wang KQ, Sun DW, Pu HB, Wei QY (2019) Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 191:449–456

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Science-Technology Development Project of Jilin Province of China (No. 20170101174JC) and the National Natural Science Foundation (Grant Nos. 21773080, 21711540292, and 21773079) of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Cheng, Y., Hao, B. et al. Metal–organic framework modified by silver nanoparticles for SERS-based determination of sildenafil and pioglitazone hydrochloride. Microchim Acta 188, 351 (2021). https://doi.org/10.1007/s00604-021-05008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05008-4

Keywords

Navigation