Skip to main content
Log in

Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs). The combination between target miRNA, DSNSA, and AgNCs is achieved by the unique design of DNA sequences. Target miRNA opens the hairpin structure of the Hairpin DNA probe (HP) by hybridizing with the HP and initiates the duplex-specific nuclease-assisted signal amplification (DSNSA) reaction. The DSNSA reaction generates the release of the guanine-rich DNA sequence, which can turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The fluorescence intensity of AgNCs corresponds to the dosage of the target miRNA. This is measured at 630 nm by exciting at 560 nm. The constructed method exhibits a low detection limit (~8.3 fmol), a great dynamic range of more than three orders of magnitude, and excellent selectivity. Moreover, it has a good performance for miR-21 detection in complex biological samples.

Graphical abstract

A novel strategy for microRNAs (miRNAs) detection has been developed utilizing duplex-specific nuclease-assisted signal amplification (DSNSA) and guanine-rich DNA-enhanced fluorescence of DNA-templated silver nanoclusters (AgNCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petty JT, Zheng J, Hud NV, Dickson RM (2004)DNA-templated Ag nanocluster formation. J Am Chem Soc 126:5207–5212. https://doi.org/10.1021/ja031931o

    Article  CAS  PubMed  Google Scholar 

  2. Su YT, Lan GY, Chen WY, Chang HT (2010) Detection of copper ions through recovery of the fluorescence of DNA-templatedcopper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem 82:8566–8572. https://doi.org/10.1021/ac101659d

    Article  CAS  PubMed  Google Scholar 

  3. Guo W, Yuan J, Wang E (2009)Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun 23:3395–3397. https://doi.org/10.1039/b821518a

    Article  CAS  Google Scholar 

  4. Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87:693–698. https://doi.org/10.1021/ac503492k

    Article  CAS  PubMed  Google Scholar 

  5. Han B, Wang E (2011)Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosens Bioelectron 26:2585–2589. https://doi.org/10.1016/j.bios.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  6. New SY, Lee ST, Su XD (2016)DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 8:17729–17746. https://doi.org/10.1039/c6nr05872h

    Article  CAS  PubMed  Google Scholar 

  7. Huang Z, Pu F, Lin Y, Ren J, Qu X (2011) Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem Commun 47:3487–3489. https://doi.org/10.1039/c0cc05651k

    Article  CAS  Google Scholar 

  8. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110. https://doi.org/10.1021/nl101773c

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Zhong X, Zhang H, Le XC, Zhu JJ (2012)Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 84:5170–5174. https://doi.org/10.1021/ac3006268

    Article  CAS  PubMed  Google Scholar 

  10. Yeh HC, Sharma J, Shih IM, Vu DM, Martinez JS, Werner JH (2012) A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J Am Chem Soc 134:11550–11558. https://doi.org/10.1021/ja3024737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ye T, Chen J, Liu Y, Ji X, Zhou G, He Z (2014) Periodic fluorescent silver clusters assembled by rolling circle amplification and their sensor application. ACS Appl Mater Interfaces 6:16091–16096. https://doi.org/10.1021/am504035a

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Jiao B (2017) Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchim Acta 184:4167–4173. https://doi.org/10.1007/s00604-017-2459-x

    Article  CAS  Google Scholar 

  13. He Y, Jiao B (2016) Detection of biotin-streptavidin interactions via terminal protection of small molecule linked DNA and the formation of fluorescent DNA-templated silver nanoclusters. Microchim Acta 183:3183–3189. https://doi.org/10.1007/s00604-016-1968-3

    Article  CAS  Google Scholar 

  14. Mellis D, Caporali A (2018)MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans 46:11–21. https://doi.org/10.1042/BST20170037

    Article  CAS  PubMed  Google Scholar 

  15. Beermann J, Piccoli MT, Viereck J, Thum T (2016)Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325. https://doi.org/10.1152/physrev.00041.2015

    Article  CAS  PubMed  Google Scholar 

  16. Shah P, Bristow MR, Port JD (2017) MicroRNAs in heart failure, cardiac transplantation, and myocardial recovery: biomarkers with therapeutic potential. Current Heart Failure Reports 14:454–464. https://doi.org/10.1007/s11897-017-0362-8

    Article  CAS  PubMed  Google Scholar 

  17. Snowhite IV, Allende G, Sosenko J, Pastori RL, Cayetano SM, Pugliese A (2017) Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia 60:1409–1422. https://doi.org/10.1007/s00125-017-4294-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. https://doi.org/10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  19. Cissell KA, Shrestha S, Deo SK (2007) MicroRNA detection: challenges for the analytical chemist. Anal Chem 79:4754–4761. https://doi.org/10.1021/ac0719305

    Article  CAS  Google Scholar 

  20. He SL, Green R (2013) Northern blotting. Methods Enzymol 530:75–87. https://doi.org/10.1016/B978-0-12-420037-1.00003-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Várallyay É, Burgyán J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196. https://doi.org/10.1038/nprot.2007.528

    Article  CAS  PubMed  Google Scholar 

  22. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99:15524–15529. https://doi.org/10.1073/pnas.242606799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9: 1274-1281. 10.1261rna.5980303

  24. Thomson JM, Parker J, Perou CM, Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1:47–53. https://doi.org/10.1038/NMETH704

    Article  CAS  PubMed  Google Scholar 

  25. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744. https://doi.org/10.1261/rna.2148705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan JL, Li ZP, Liu CH, Cheng YQ (2010) Simple and sensitive detection of microRNAs with ligase chain reaction. Chem Commun 46:2432–2434. https://doi.org/10.1039/b923521c

    Article  CAS  Google Scholar 

  27. Zhang PB, Zhang JY, Wang CL, Liu CH, Wang H, Li ZP (2014) Highly sensitive and specific multiplexed microRNA quantification using size-coded ligation chain reaction. Anal Chem 86:1076–1082. https://doi.org/10.1021/ac4026384

    Article  CAS  PubMed  Google Scholar 

  28. Jonstrup SP, Koch J, Kjems J (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA 12:1747–1752. https://doi.org/10.1261/rna.110706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng YQ, Zhang X, Li ZP, Jiao XX, Wang YC, Zhang YL (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 48:3268–3272. https://doi.org/10.1002/anie.200805665

    Article  CAS  Google Scholar 

  30. Zhou C, Huang R, Zhou XM, Xing D (2020) Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification. Talanta 216:120954. https://doi.org/10.1016/j.talanta.2020.120954

    Article  CAS  PubMed  Google Scholar 

  31. Jia HX, Li ZP, Liu CH, Cheng YQ (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem Int Ed 49:5498–5501. https://doi.org/10.1002/anie.201001375

    Article  CAS  Google Scholar 

  32. Li CP, Li ZP, Jia HX, Yan JL (2011)One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP). Chem Commun 47:2595–2597. https://doi.org/10.1039/c0cc03957h

    Article  CAS  Google Scholar 

  33. Du WF, Lv MM, Li JJ, Yu RQ, Jiang JH (2016) A ligation-based loop-mediated isothermal amplification (ligation-LAMP) strategy for highly selective microRNA detection. Chem Commun 52:12721–12724. https://doi.org/10.1039/c6cc06160e

    Article  CAS  Google Scholar 

  34. Yin BC, Liu YQ, Ye BC (2012) One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc 134:5064–5067. https://doi.org/10.1021/ja300721s

    Article  CAS  PubMed  Google Scholar 

  35. Hu ZZ, Chen J, Li WY, Wang Y, Li YX, Sang LJ, Li JM, Zhang QF, Ibupoto ZH, Yu C (2015)Label-free fluorescence turn-on detection of microRNA based on duplex-specific nuclease and a perylene probe. Anal Chim Acta 895:89–94. https://doi.org/10.1016/j.aca.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  36. Xu F, Dong H, Cao Y, Lu H, Meng X, Dai W, Zhang X, Al-Ghanim KA, Mahboob S (2016) Ultrasensitive and multiple disease-related microRNA detection based on tetrahedral DNA nanostructures and duplex-specific nuclease-assisted signal amplification. ACS Appl Mater Interfaces 8:33499–33505. https://doi.org/10.1021/acsami.6b12214

    Article  CAS  PubMed  Google Scholar 

  37. Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8:706–713. https://doi.org/10.4161/rna.8.5.16154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc Natl Acad Sci 104:12616–12621. https://doi.org/10.1073/pnas.0610677104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heinlein T, Knemeyer JP, Piestert O, Sauer M (2003) Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem B 107:7957–7964. https://doi.org/10.1021/jp0348068

    Article  CAS  Google Scholar 

  40. Maretti L, Billone PS, Liu Y, Scaiano JC (2009) Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J Am Chem Soc 131:13972–13980. https://doi.org/10.1021/ja900201k

    Article  CAS  PubMed  Google Scholar 

  41. Yang SW, Vosch T (2011) Rapid detection of microRNA by a silver nanocluster DNA probe. Anal Chem 83:6935–6939. https://doi.org/10.1021/ac201903n

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Li C, Zhi X, Ramón GA, Liu Y, Zhang C, Pan F, Cui D (2016) Hairpin DNA-templated silver nanoclusters as novel beacons in strand displacement amplification for microRNAs detection. Anal Chem 88:1294–1302. https://doi.org/10.1021/acs.analchem.5b03729

    Article  CAS  PubMed  Google Scholar 

  43. Kim H, Kang S, Park KS, Park HG (2018)Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sensors Actuators B Chem 260:140–145. https://doi.org/10.1016/j.snb.2017.12.137

    Article  CAS  Google Scholar 

  44. Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J (2019) DNA three-way junction-actuated strand displacement for miRNA detection using a fluorescence light-up Ag nanocluster probe. Analyst 144:3836–3842. https://doi.org/10.1039/c9an00508k

    Article  CAS  PubMed  Google Scholar 

  45. Pan M, Liang M, Sun J, Liu X, Wang F (2018) Lighting up fluorescent silver clusters via target-catalyzed hairpin assembly for amplified biosensing. Langmuir 34:14851–14857. https://doi.org/10.1021/acs.langmuir.8b01576

    Article  CAS  PubMed  Google Scholar 

  46. Han Y, Zhang F, Gong H, Cai C (2019) Multifunctional G-quadruplex-based fluorescence probe coupled with DNA-templated AgNCs for simultaneous detection of multiple DNAs and MicroRNAs. Anal Chim Acta 1053:105–113. https://doi.org/10.1016/j.aca.2018.11.062

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project is supported by the National Natural Science Foundation of China (21707027), the Natural Science Foundation of Hebei Province (B2016201052), the Natural Science Foundation of Hebei Education Department (QN2017024), and China Postdoctoral Science Foundation (2017M621094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xia Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Gm., Huo, Lw., Tong, Yx. et al. Label-free and sensitive MiRNA detection based on turn-on fluorescence of DNA-templated silver nanoclusters coupled with duplex-specific nuclease-assisted signal amplification. Microchim Acta 188, 355 (2021). https://doi.org/10.1007/s00604-021-05001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05001-x

Keywords

Navigation