Skip to main content
Log in

Functional magnetic nanoparticle–based affinity probe for MALDI mass spectrometric detection of ricin B

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The use of lactosylated Fe3O4 magnetic nanoparticles (MNP@LAC) has been explored as affinity probes against ricin B based on galactose-ricin B binding interactions. Lactose was bound onto the surface of aminated MNPs through the Maillard reaction. The enrichment of ricin B took ~1 h by incubating MNP@LAC with samples under shaking at room temperature, followed by magnetic isolation. The resultant MNP@LAC-ricin B conjugates were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The limit of detection toward ricin B was ~3 nM by using the developed method. It was possible to detect the peptides derived from the tryptic digest of trace ricin B (~0.39 nM) enriched by the MNP@LAC probes followed by tryptic digestion and MALDI-MS analysis. The feasibility of using the developed method for detection of ricin B from complex white corn starch samples spiked with trace ricin B was demonstrated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ler SG, Lee FK, Gopalakrishnakone P (2006) Trends in detection of warfare agents: detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J Chromatogr A 1133:1–12

    Article  CAS  PubMed  Google Scholar 

  2. Słomińska-Wojewódzka M, Sandvig K (2013) Ricin and ricin containing immunotoxins: insights into intracellular transport and mechanism of action in vitro. Antibodies 2:236–269

    Article  Google Scholar 

  3. Moshiri M, Hamid F, Etemad L (2016) Ricin toxicity: clinical and molecular aspects. Reports of biochemistry & molecular biology 4:60

    CAS  Google Scholar 

  4. Olsnes S, Pihl A (1973) Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry 12:3121–3126

    Article  CAS  PubMed  Google Scholar 

  5. Ganesan K, Raza SK, Vijayaraghavan R (2010) Chemical warfare agents. J Pharm Bioallied Sci 2:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bozza WP, Tolleson WH, Rosado LAR, Zhang B (2015) Ricin detection: tracking active toxin. Biotechnol Adv 33:117–123

    Article  CAS  PubMed  Google Scholar 

  7. The June (2018) Cologne Ricin Plot: a new threshold in jihadi bio terror. Available online: https://ctc.usma.edu/june-2018-cologne-ricin plot-new-threshold-jihadi-bio-terror/ (retrieved Oct. 5, 2020)

  8. Perez Evan (2020) A package containing the poison ricin and addressed to Trump intercepted by law enforcement. CNN. Retrieved Sept. 21, 2020

  9. Isenberg SL, Carter MD, Miller MA, Noras AI, Mojica MA, Carlsen ST, Bulathsinghala CP, Thomas JD, Johnson RC (2018) Quantification of ricinine and abrine in human plasma by HPLC–MS-MS: biomarkers of exposure to ricin and abrin. J Anal Toxicol 42:630–636

    CAS  PubMed  Google Scholar 

  10. Bradberry SM, Dickers KJ, Rice P, Griffiths GD, Vale JA (2003) Ricin poisoning. Toxicol Rev 22:65–70

    Article  CAS  PubMed  Google Scholar 

  11. Godal A, Olsnes S, Pihl A (1981) Radioimmunoassays of abrin and ricin in blood. J Toxicol Envin Heal A 8:409–417

    Article  CAS  Google Scholar 

  12. Shyu RH, Shyu HF, Liu HW, Tang SS (2002) Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 40:255–258

    Article  CAS  PubMed  Google Scholar 

  13. Sun J, Zhang X, Li T, Xie J, Shao B, Xue D, Tang X, Li H, Liu Y (2019) Ultrasensitive on-site detection of biological active ricin in complex food matrices based on immunomagnetic enrichment and fluorescence switch-on nanoprobe. Anal Chem 91:6454–6461

    Article  CAS  PubMed  Google Scholar 

  14. Simon S, Worbs S, Avondet MA, Tracz DM, Dano J, Schmidt L, Volland H, Dorner BG, Corbett CR (2015) Recommended immunological assays to screen for ricin containing samples. Toxins 7:4967–4986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Israeli O, Falach R, Sapoznikov A, Gal Y, Shifman O, Ehrlich S, Aftalion M, Beth-Din A, Kronman C, Sabo T (2018) Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay. Forensic Toxicol 36:72–80

    Article  CAS  Google Scholar 

  16. Oliveira G, Schneedorf JM (2021) A simple, fast and portable method for electrochemical detection of adenine released by ricin enzymatic activity. Toxins 13:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heller NC, Garrett AM, Merkley ED, Cendrowski SR, Melville AM, Arce JS, Jenson SC, Wahl KL, Jarman KH (2019) Probabilistic limit of detection for ricin identification using a shotgun proteomics assay. Anal Chem 91:12399–12406

    Article  CAS  PubMed  Google Scholar 

  18. Narang U, Anderson GP, Ligler FS, Burans J (1997) Fiber optic-based biosensor for ricin. Biosens Bioelectron 12:937–945

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Dai H, Sun Y, Ni P, Wang Y, Jiang S, Li Z (2014) Highly sensitive and rapid visual detection of ricin using unmodified gold nanoparticle probes. RSC Adv 4:43998–44003

    Article  CAS  Google Scholar 

  20. Selvaprakash K, Chen Y-C (2017) Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron 92:410–416

    Article  CAS  PubMed  Google Scholar 

  21. Nagatsuka T, Uzawa H, Sato K, Kondo S, Izumi M, Yokoyama K, Ohsawa I, Seto Y, Neri P, Mori H, Nishida Y (2013) Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS Appl Mater Interfaces 5:4173–4180

    Article  CAS  PubMed  Google Scholar 

  22. Tran H, Leong C, Loke WK, Dogovski C, Liu CQ (2008) Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples. Toxicon 52:582–588

    Article  CAS  PubMed  Google Scholar 

  23. Feltis BN, Sexton BA, Glenn FL, Best MJ, Wilkins M, Davis TJ (2008) A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron 23:1131–1136

    Article  CAS  PubMed  Google Scholar 

  24. Kandasamy K, Selvaprakash K, Chen Y-C (2019) Using lactosylated cysteine functionalized gold nanoparticles as colorimetric sensing probes for rapid detection of the ricin B chain. Microchim Acta 186:847

    Article  CAS  Google Scholar 

  25. Bai Y-L, Shahed-Al-Mahmud M, Selvaprakash K, Lin N-T, Chen Y-C (2019) Tail Fiber protein-immobilized magnetic nanoparticle-based affinity approaches for detection of Acinetobacter baumannii. Anal Chem 91:10335–10342

    Article  CAS  PubMed  Google Scholar 

  26. Wu C-Y, Wu M-L, Chen Y-C (2018) Selective extraction of n-butylidenephthalide from Angelica sinensis (Danggui) by using functionalized iron oxide magnetic nanoparticles as trapping probes. Anal Methods 10:1593–1601

    Article  CAS  Google Scholar 

  27. Adak AK, Li BY, Lin CC (2015) Advances in multifunctional glycosylated nanomaterials: preparation and applications in glycoscience. Carbohydr Res 405:2–12

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Baudys J, Barr JR, Kalb SR (2016) Improved sensitivity for the qualitative and quantitative analysis of active ricin by MALDI-TOF mass spectrometry. Anal Chem 88:6867–6872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Wang C, Shao B, Wang Z, Xue D, Liu Y, Qi K, Yang Y, Niu Y (2017) Fast on-site visual detection of active ricin using a combination of highly efficient dual-recognition affinity magnetic enrichment and a specific gold nanoparticle probe. Anal Chem 89:12209–12216

    Article  CAS  PubMed  Google Scholar 

  30. Liu HZ, Tang JJ, Guo L, Xie JW, Wang YX (2011) Galactose-functionalized magnetic iron-oxide nanoparticles for enrichment and detection of ricin toxin. Anal Sci 27:19–24

    Article  PubMed  Google Scholar 

  31. Feldberg L, Schuster O, Elhanany E, Laskar O, Yitzhaki S, Gura S (2020) Rapid and sensitive identification of ricin in environmental samples based on lactamyl agarose beads using LC-MS/MS (MRM). J Mass Spectrom 55:e4482

    Article  CAS  PubMed  Google Scholar 

  32. Feldberg L, Elhanany E, Laskar O, Schuster O (2021) Rapid, sensitive and reliable ricin identification in serum samples using LC–MS/MS. Toxins 13:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou YY, Li Y, Yu AN (2016) The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system. Food Sci Technol 36:268–274

    Article  Google Scholar 

  34. de Oliveira FC, Coimbra JSDR, de Oliveira EB, Zuñiga ADG, Rojas EEG (2016) Food protein-polysaccharide conjugates obtained via the Maillard reaction: a review. Crit Rev Food Sci Nutr 56:1108–1125

    Article  PubMed  Google Scholar 

  35. Ames JM (1990) Control of the Maillard reaction in food systems. Trends Food Sci Technol 1:150–154

    Article  CAS  Google Scholar 

  36. Shimoda T, Funatsu G (1985) Binding of lactose and galactose to native and iodinated ricin D. Agric Biol Chem 49:2125–2130

    CAS  Google Scholar 

  37. Zentz C, Frénoy JP, Bourrillon R (1978) Binding of galactose and lactose to ricin. Equilibrium studies. Biochim. Biophys. Acta (BBA)-Protein Structure 536: 18–26

  38. Kuo F-Y, Chang B-Y, Wu C-Y, Mong K-KT, Chen Y-C (2015) Magnetic nanoparticle-based platform for characterization of shiga-like toxin 1 from complex samples. Anal Chem 87:10513–10520

    Article  CAS  PubMed  Google Scholar 

  39. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  PubMed  Google Scholar 

  40. Chen W-Y, Chen Y-C (2007) Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads. Anal Chem 79:2394–2401

    Article  CAS  PubMed  Google Scholar 

  41. Hu J, Obayemi JD, Malatesta K, Košmrlj A, Soboyejo WO (2018) Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells. Mater Sci Eng C 88:32–45

    Article  CAS  Google Scholar 

  42. Balieiro AL, Santos RA, Pereira MM, Figueiredo RT, Freitas LS, de Alsina OLS, Lima AS, Soares CMF (2016) Adsorption process of molecularly imprinted silica for extraction of lactose from milk. Braz J Chem Eng 33:361–372

    Article  CAS  Google Scholar 

  43. Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL (2021) Power of infrared and Raman spectroscopies to characterize metal-organic frameworks and investigate their interaction with guest molecules. Chem Rev 121:1286–1424

    Article  CAS  PubMed  Google Scholar 

  44. Wojnarowska-Nowak R, Polit J, Sheregii EM (2020) Interaction of gold nanoparticles with cholesterol oxidase enzyme in bionanocomplex—determination of the protein structure by Fourier transform infrared spectroscopy. J Nanopart Res 22:1–14

    Article  Google Scholar 

  45. Panagiotopoulos C, Sempéré R (2005) Analytical methods for the determination of sugars in marine samples: a historical perspective and future directions. Limnol Oceanogr-Meth 3:419–454

    Article  CAS  Google Scholar 

  46. Bushueva TL, Tonevitsky AG (1987) The effect of pH on the conformation and stability of the structure of plant toxin—ricin. FEBS Lett 215:155–159

    Article  CAS  PubMed  Google Scholar 

  47. Griffiths GD (2011) Understanding ricin from a defensive viewpoint. Toxins 3:1373–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerssen A, Bovee TH, van Ginkel LA, van Iersel ML, Hoogenboom RL (2019) Food and feed safety: cases and approaches to identify the responsible toxins and toxicants. Food Control 98:9–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Science and Technology of Taiwan (MOST 108-2113-M-009-018-MY3) for the financial support of this research. KS thank the Ministry of Science and Technology of Taiwan for providing him the postdoctoral fellowship (MOST 109-2811-M-009-519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chie Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandasamy, K., Selvaprakash, K. & Chen, YC. Functional magnetic nanoparticle–based affinity probe for MALDI mass spectrometric detection of ricin B. Microchim Acta 188, 339 (2021). https://doi.org/10.1007/s00604-021-04991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04991-y

Keywords

Navigation