Skip to main content

Advertisement

Log in

Recent advances in nanomaterials-based electrochemical immunosensors and aptasensors for HER2 assessment in breast cancer

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Human epidermal growth factor receptor 2 (HER2) is one of the key molecular targets in breast cancer pathogenesis. Overexpression and/or amplification of HER2 in approximately 15–20% of breast cancer patients is associated with high mortality and poor prognosis. Accumulating evidence shows that accurate and sensitive detection of HER2 improves the survival outcomes for HER2-positive breast cancer patients from targeted therapies. The current methods of clinical determination of HER2 expression levels are based on slide-based assays that rely on invasively collected primary tumours. Alternatively, ELISA-based detection of the shredded HER2 extracellular domain (HER2-ECD) of has been suggested as a surrogate method for monitoring disease progress and treatment response in breast cancer patients. In the past decade, biosensors have emerged as an alternative modality for the detection of circulating HER2-ECD in human serum samples. In particular, electrochemical biosensors based on nanomaterials and antibodies and aptamers have been increasingly developed as promising tools for rapid, sensitive, and cost-effective detection of HER2-ECD. These biosensors harness the high affinity and specificity of antibodies and aptamers, and unique conductive properties, biocompatibility, large surface area, and chemical stability of nanomaterials for selective and sensitive assessment of the HER2. This review provides an overview of the recent advances in the application of nanomaterials-based immunosensors and aptasensors for detection of circulating HER2-ECD. In particular, various electrochemical techniques, detection approaches, and nanomaterials are discussed. Further, analytical figures of merit of various HER2 immunosensors and aptasensors are compared. Finally, possible challenges and potential opportunities for biosensor-based detection of HER2-ECD are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aleskandarany MA, Vandenberghe ME, Marchiò C, Ellis IO, Sapino A, Rakha EA (2018) Tumour heterogeneity of breast cancer: from morphology to personalised medicine. Pathobiology 85(1–2):23–34. https://doi.org/10.1159/000477851

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Andre F, Pusztai L (2006) Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 3(11):621–632. https://doi.org/10.1038/ncponc0636

    Article  PubMed  Google Scholar 

  4. Garmpis N, Damaskos C, Garmpi A, Nikolettos K, Dimitroulis D, Diamantis E, Farmaki P, Patsouras A, Voutyritsa E, Syllaios A, Zografos CG, Antoniou EA, Nikolettos N, Kostakis A, Kontzoglou K, Schizas D, Nonni A (2020) Molecular classification and future therapeutic challenges of triple-negative breast Cancer. In vivo 34(4):1715. https://doi.org/10.21873/invivo.11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prat A, Chaudhury A, Solovieff N, Paré L, Martinez D, Chic N, Martínez-Sáez O, Brasó-Maristany F, Lteif A, Taran T, Babbar N, Su F (2021) Correlative biomarker analysis of intrinsic subtypes and efficacy across the MONALEESA phase III studies. J Clin Oncol 39:1458–1467. https://doi.org/10.1200/jco.20.02977

    Article  PubMed  PubMed Central  Google Scholar 

  6. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  7. Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31. https://doi.org/10.1677/erc.0.0080011

    Article  CAS  PubMed  Google Scholar 

  8. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. https://doi.org/10.1038/35052073

    Article  CAS  PubMed  Google Scholar 

  9. Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–6487. https://doi.org/10.1038/sj.onc.1210477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gabos Z, Sinha R, Hanson J, Chauhan N, Hugh J, Mackey JR, Abdulkarim B (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24(36):5658–5663. https://doi.org/10.1200/jco.2006.07.0250

    Article  CAS  Google Scholar 

  11. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2011) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32. https://doi.org/10.1038/nrclinonc.2011.177

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduction and Targeted Therapy 4(1):34. https://doi.org/10.1038/s41392-019-0069-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch Pathol Lab Med 142(11):1364–1382. https://doi.org/10.5858/arpa.2018-0902-SA

    Article  PubMed  Google Scholar 

  14. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch Pathol Lab Med 138(2):241–256. https://doi.org/10.5858/arpa.2013-0953-SA

    Article  PubMed  Google Scholar 

  15. Shah S, Chen B (2011) Testing for HER2 in breast cancer: a continuing evolution. Pathol Res Int 2011:903202–903216. https://doi.org/10.4061/2011/903202

    Article  Google Scholar 

  16. Hanna WM, Kwok K (2006) Chromogenic in-situ hybridization: a viable alternative to fluorescence in-situ hybridization in the HER2 testing algorithm. Mod Pathol 19(4):481–487. https://doi.org/10.1038/modpathol.3800555

    Article  CAS  PubMed  Google Scholar 

  17. Wesoła M, Jeleń M (2015) A comparison of IHC and FISH cytogenetic methods in the evaluation of HER2 status in breast Cancer. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 24(5):899–903. https://doi.org/10.17219/acem/27923

    Article  Google Scholar 

  18. FDA (2021) List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). Food and Drug Administration. https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools. Accessed 7 April 2021 2021

  19. Ross JS, Symmans WF, Pusztai L, Hortobagyi GN (2007) Standardizing slide-based assays in breast cancer: hormone receptors, HER2, and sentinel lymph nodes. Clin Cancer Res 13(10):2831–2835. https://doi.org/10.1158/1078-0432.ccr-06-2522

    Article  CAS  PubMed  Google Scholar 

  20. Bogen SA (2019) A root cause analysis into the high error rate in clinical immunohistochemistry. Appl Immunohistochem Mol Morphol 27(5):329–338. https://doi.org/10.1097/pai.0000000000000750

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laurinavicius A, Plancoulaine B, Herlin P, Laurinaviciene A (2016) Comprehensive immunohistochemistry: digital, analytical and integrated. Pathobiology 83(2–3):156–163. https://doi.org/10.1159/000442389

    Article  CAS  PubMed  Google Scholar 

  22. Molina R, Augé JM, Escudero JM, Filella X, Zanon G, Pahisa J, Farrus B, Muñoz M, Velasco M (2010) Evaluation of tumor markers (HER-2/neu oncoprotein, CEA, and CA 15.3) in patients with locoregional breast cancer: prognostic value. Tumor Biol 31(3):171–180. https://doi.org/10.1007/s13277-010-0025-9

    Article  CAS  Google Scholar 

  23. Carney WP, Neumann R, Lipton A, Leitzel K, Ali S, Price CP (2004) Monitoring the circulating levels of the HER2/neu Oncoprotein in breast cancer. Clinical Breast Cancer 5(2):105–116. https://doi.org/10.3816/CBC.2004.n.014

    Article  CAS  PubMed  Google Scholar 

  24. Fehm T, Gebauer G, Jäger W (2002) Clinical utility of serial serum c-erbB-2 determinations in the follow-up of breast cancer patients. Breast Cancer Res Treat 75(2):97–106. https://doi.org/10.1023/a:1019601022456

    Article  CAS  PubMed  Google Scholar 

  25. Dittadi R, Zancan M, Perasole A, Gion M (2001) Evaluation of HER-2/neu in serum and tissue of primary and metastatic breast cancer patients using an automated enzyme immunoassay. Int J Biol Markers 16(4):255–261

    Article  CAS  PubMed  Google Scholar 

  26. A-S GAUCHEZ, RAVANEL N, VILLEMAIN D, F-X BRAND, PASQUIER D, PAYAN R, MOUSSEAU M (2008) Evaluation of a manual ELISA kit for determination of HER2/neu in serum of breast cancer patients. Anticancer Res 28(5B):3067–3073

    Google Scholar 

  27. Shamshirian A, Aref AR, Yip GW, Ebrahimi Warkiani M, Heydari K, Razavi Bazaz S, Hamzehgardeshi Z, Shamshirian D, Moosazadeh M, Alizadeh-Navaei R (2020) Diagnostic value of serum HER2 levels in breast cancer: a systematic review and meta-analysis. BMC Cancer 20(1):1049. https://doi.org/10.1186/s12885-020-07545-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zoppoli G, Garuti A, Cirmena G, di Cantogno LV, Botta C, Gallo M, Ferraioli D, Carminati E, Baccini P, Curto M, Fregatti P, Isnaldi E, Lia M, Murialdo R, Friedman D, Sapino A, Ballestrero A (2017) Her2 assessment using quantitative reverse transcriptase polymerase chain reaction reliably identifies Her2 overexpression without amplification in breast cancer cases. J Transl Med 15(1):91. https://doi.org/10.1186/s12967-017-1195-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Şahin S, Caglayan MO, Üstündağ Z (2020) Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Microchim Acta 187(10):549. https://doi.org/10.1007/s00604-020-04526-x

    Article  CAS  Google Scholar 

  30. Xiang W, Lv Q, Shi H, Xie B, Gao L (2020) Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 214:120716. https://doi.org/10.1016/j.talanta.2020.120716

    Article  CAS  PubMed  Google Scholar 

  31. Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M (2018) Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): a review. Biosens Bioelectron 110:23–37. https://doi.org/10.1016/j.bios.2018.03.037

    Article  CAS  PubMed  Google Scholar 

  32. Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, Tehrani BS, Pasdar A, Mokhtarzadeh A, Ramezani M (2019) Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron 130:1–19. https://doi.org/10.1016/j.bios.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  33. Peng H-P, Lee KH, Jian J-W, Yang A-S (2014) Origins of specificity and affinity in antibody–protein interactions. Proc Natl Acad Sci 111(26):E2656–E2665. https://doi.org/10.1073/pnas.1401131111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frejd FY, Kim KT (2017) Affibody molecules as engineered protein drugs. Exp Mol Med 49(3):e306. https://doi.org/10.1038/emm.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117. https://doi.org/10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  36. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452. https://doi.org/10.1021/ac201057w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahirwar R, Dalal A, Sharma JG, Yadav BK, Nahar P, Kumar A, Kumar S (2019) An aptasensor for rapid and sensitive detection of estrogen receptor alpha in human breast cancer. Biotechnol Bioeng 116(1):227–233. https://doi.org/10.1002/bit.26819

    Article  CAS  PubMed  Google Scholar 

  38. Ahirwar R, Nahar P (2015) Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis. J Chromatogr B Anal Technol Biomed Life Sci 997:105–109. https://doi.org/10.1016/j.jchromb.2015.06.003

    Article  CAS  Google Scholar 

  39. Ahirwar R, Nahar P (2015) Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis. J Agric Food Chem 63(16):4104–4111. https://doi.org/10.1021/acs.jafc.5b00784

    Article  CAS  PubMed  Google Scholar 

  40. Ahirwar R, Vellarikkal SK, Sett A, Sivasubbu S, Scaria V, Bora U, Borthakur BB, Kataki AC, Sharma JD, Nahar P (2016) Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLoS One 11(4):e0153001. https://doi.org/10.1371/journal.pone.0153001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Y-H, He L-L, Huang K-J, Chen Y-X, Wang S-Y, Liu Z-H, Li D (2019) Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst 144(9):2849–2866. https://doi.org/10.1039/C9AN00081J

    Article  CAS  PubMed  Google Scholar 

  42. Ahirwar R, Khan N, Kumar S (2021) Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 21(7):703–721. https://doi.org/10.1080/14737159.2021.1920397

    Article  CAS  PubMed  Google Scholar 

  43. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z (2019) A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 7(23):3661–3669. https://doi.org/10.1039/C9TB00472F

    Article  CAS  Google Scholar 

  44. Yang S, You M, Zhang F, Wang Q, He P (2018) A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sensors Actuators B Chem 258:796–802. https://doi.org/10.1016/j.snb.2017.11.119

    Article  CAS  Google Scholar 

  45. Arya SK, Zhurauski P, Jolly P, Batistuti MR, Mulato M, Estrela P (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112. https://doi.org/10.1016/j.bios.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  46. Bezerra G, Córdula C, Campos D, Nascimento G, Oliveira N, Seabra MA, Visani V, Lucas S, Lopes I, Santos J, Xavier F, Borba MA, Martins D, Lima-Filho J (2019) Electrochemical aptasensor for the detection of HER2 in human serum to assist in the diagnosis of early stage breast cancer. Anal Bioanal Chem 411(25):6667–6676. https://doi.org/10.1007/s00216-019-02040-5

    Article  CAS  PubMed  Google Scholar 

  47. Guo X, Liu S, Yang M, Du H, Qu F (2019) Dual signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor receptor-2 detection. Biosens Bioelectron 139:111312. https://doi.org/10.1016/j.bios.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  48. Ilkhani H, Sarparast M, Noori A, Zahra Bathaie S, Mousavi MF (2015) Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron 74:491–497. https://doi.org/10.1016/j.bios.2015.06.063

    Article  CAS  PubMed  Google Scholar 

  49. Chun L, Kim S-E, Cho M, W-s C, Nam J, Lee DW, Lee Y (2013) Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sensors Actuators B Chem 186:446–450. https://doi.org/10.1016/j.snb.2013.06.046

    Article  CAS  Google Scholar 

  50. Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sensors Actuators B Chem 220:1145–1151. https://doi.org/10.1016/j.snb.2015.06.094

    Article  CAS  Google Scholar 

  51. Rostamabadi PF, Heydari-Bafrooei E (2019) Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186(8):495. https://doi.org/10.1007/s00604-019-3619-y

    Article  CAS  Google Scholar 

  52. Zhou N, Su F, Li Z, Yan X, Zhang C, Hu B, He L, Wang M, Zhang Z (2019) Gold nanoparticles conjugated to bimetallic manganese(II) and iron(II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells. Microchim Acta 186(2):75. https://doi.org/10.1007/s00604-018-3184-9

    Article  CAS  Google Scholar 

  53. Salimian R, Kékedy-Nagy L, Ferapontova EE (2017) Specific picomolar detection of a breast cancer biomarker HER-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/PEG-modified electrode. ChemElectroChem 4(4):872–879. https://doi.org/10.1002/celc.201700025

    Article  CAS  Google Scholar 

  54. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269. https://doi.org/10.1021/acs.analchem.7b01747

    Article  CAS  PubMed  Google Scholar 

  55. Luo J, Liang D, Qiu X, Yang M (2019) Photoelectrochemical detection of breast cancer biomarker based on hexagonal carbon nitride tubes. Anal Bioanal Chem 411(26):6889–6897. https://doi.org/10.1007/s00216-019-02060-1

    Article  CAS  PubMed  Google Scholar 

  56. Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe. Microchim Acta 186(5):316. https://doi.org/10.1007/s00604-019-3412-y

    Article  CAS  Google Scholar 

  57. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552. https://doi.org/10.1021/acs.analchem.6b04756

    Article  CAS  PubMed  Google Scholar 

  58. Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123. https://doi.org/10.1016/j.bios.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  59. Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15. https://doi.org/10.1016/j.bios.2019.03.043

    Article  CAS  PubMed  Google Scholar 

  60. Zhu Y, Chandra P, Shim Y-B (2013) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal Chem 85(2):1058–1064. https://doi.org/10.1021/ac302923k

    Article  CAS  PubMed  Google Scholar 

  61. Ferreira DC, Batistuti MR, Bachour B, Mulato M (2021) Aptasensor based on screen-printed electrode for breast cancer detection in undiluted human serum. Bioelectrochemistry 137:107586. https://doi.org/10.1016/j.bioelechem.2020.107586

    Article  CAS  PubMed  Google Scholar 

  62. Bhalla N, Jolly P, Formisano N, Estrela P (2016) Introduction to biosensors. Essays Biochem 60(1):1–8. https://doi.org/10.1042/ebc20150001

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu H, Ge J, Ma E, Yang L (2019) Advanced biomaterials for biosensor and theranostics. In: Yang L, Bhaduri SB, Webster TJ (eds) Biomaterials in Translational Medicine. Academic Press, pp 213–255. https://doi.org/10.1016/B978-0-12-813477-1.00010-4

  64. Sawant SN (2017) Development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, MA AM (eds) Biopolymer Composites in Electronics. Elsevier, pp 353–383. https://doi.org/10.1016/B978-0-12-809261-3.00013-9

  65. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors — sensor principles and architectures. Sensors 8(3):1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181(9):865–891. https://doi.org/10.1007/s00604-014-1181-1

    Article  CAS  Google Scholar 

  67. Hussain G, Silvester DS (2018) Comparison of voltammetric techniques for ammonia sensing in ionic liquids. Electroanalysis 30(1):75–83. https://doi.org/10.1002/elan.201700555

    Article  CAS  Google Scholar 

  68. Bahadır EB, Sezgintürk MK (2016) A review on impedimetric biosensors. Artificial Cells, Nanomedicine, and Biotechnology 44(1):248–262. https://doi.org/10.3109/21691401.2014.942456

    Article  CAS  PubMed  Google Scholar 

  69. Kounaves SP (1997) Voltammetric techniques. In: Settle FA (ed) Handbook of instrumental techniques for analytical chemistry. Prentice Hall, Upper Saddle River, pp 709–725

  70. Simões FR, Xavier MG (2017) Electrochemical sensors. In: Da Róz AL, Ferreira M, de Lima Leite F, Oliveira ON (eds) Nanoscience and its Applications. William Andrew Publishing, pp 155–178. https://doi.org/10.1016/B978-0-323-49780-0.00006-5

  71. Islam MN, Channon RB (2020) Electrochemical sensors. In: Ladame S, JYH C (eds) Bioengineering Innovative Solutions for Cancer. Academic Press, pp 47–71. https://doi.org/10.1016/B978-0-12-813886-1.00004-8

  72. Mirceski V, Guziejewski D, Stojanov L, Gulaboski R (2019) Differential square-wave voltammetry. Anal Chem 91(23):14904–14910. https://doi.org/10.1021/acs.analchem.9b03035

    Article  CAS  PubMed  Google Scholar 

  73. Osteryoung JG, Osteryoung RA (1985) Square wave voltammetry. Anal Chem 57(1):101–110. https://doi.org/10.1021/ac00279a004

    Article  Google Scholar 

  74. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555–1567. https://doi.org/10.1007/s00216-008-1970-7

    Article  CAS  PubMed  Google Scholar 

  75. Bogomolova A, Komarova E, Reber K, Gerasimov T, Yavuz O, Bhatt S, Aldissi M (2009) Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal Chem 81(10):3944–3949. https://doi.org/10.1021/ac9002358

    Article  CAS  PubMed  Google Scholar 

  76. Ravalli A, da Rocha CG, Yamanaka H, Marrazza G (2015) A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry 106:268–275. https://doi.org/10.1016/j.bioelechem.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  77. Chen D, Wang D, Hu X, Long G, Zhang Y, Zhou L (2019) A DNA nanostructured biosensor for electrochemical analysis of HER2 using bioconjugate of GNR@Pd SSs—Apt—HRP. Sensors Actuators B Chem 296:126650. https://doi.org/10.1016/j.snb.2019.126650

    Article  CAS  Google Scholar 

  78. Freitas M, Nouws HPA, Delerue-Matos C (2019) Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis 31(1):121–128. https://doi.org/10.1002/elan.201800537

    Article  CAS  Google Scholar 

  79. Freitas M, Neves MMPS, Nouws HPA, Delerue-Matos C (2020) Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta 208:120430. https://doi.org/10.1016/j.talanta.2019.120430

    Article  CAS  PubMed  Google Scholar 

  80. Shen C, Liu S, Li X, Zhao D, Yang M (2018) Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchim Acta 185(12):547. https://doi.org/10.1007/s00604-018-3086-x

    Article  CAS  Google Scholar 

  81. Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated Immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Anal Chem 90(7):4764–4769. https://doi.org/10.1021/acs.analchem.8b00023

    Article  CAS  PubMed  Google Scholar 

  82. Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225. https://doi.org/10.1016/j.bios.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  83. Xie S, Yuan Y, Chai Y, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of Nosema bombycis genomic DNA PTP1. Anal Chem 87(20):10268–10274. https://doi.org/10.1021/acs.analchem.5b01858

    Article  CAS  PubMed  Google Scholar 

  84. Maiti D, Tong X, Mou X, Yang K (2019) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9(1401). https://doi.org/10.3389/fphar.2018.01401

  85. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. https://doi.org/10.1016/j.trac.2014.06.016

    Article  CAS  Google Scholar 

  86. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6(3):301–329. https://doi.org/10.1515/ntrev-2016-0014

    Article  CAS  PubMed  Google Scholar 

  87. Shan H, Li X, Liu L, Song D, Wang Z (2020) Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 8(27):5808–5825. https://doi.org/10.1039/D0TB00705F

    Article  CAS  PubMed  Google Scholar 

  88. Malhotra BD, Ali MA (2018) Nanomaterials in biosensors: fundamentals and applications. Nanomaterials for Biosensors:1–74. https://doi.org/10.1016/B978-0-323-44923-6.00001-7

  89. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764. https://doi.org/10.1039/c3cs60273g

    Article  CAS  PubMed  Google Scholar 

  90. Xue Y, Li X, Li H, Zhang W (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5(1):4348. https://doi.org/10.1038/ncomms5348

    Article  CAS  PubMed  Google Scholar 

  91. Hartati YW, Letelay LK, Gaffar S, Wyantuti S, Bahti HH (2020) Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sensing and Bio-Sensing Research 27:100316. https://doi.org/10.1016/j.sbsr.2019.100316

    Article  Google Scholar 

  92. Ortega FG, Piguillem SV, Messina GA, Tortella GR, Rubilar O, Jiménez Castillo MI, Lorente JA, Serrano MJ, Raba J, Fernández Baldo MA (2019) EGFR detection in extracellular vesicles of breast cancer patients through immunosensor based on silica-chitosan nanoplatform. Talanta 194:243–252. https://doi.org/10.1016/j.talanta.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  93. Duan D, Yang H, Ding Y, Ye D, Li L, Ma G (2018) Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin. Electrochim Acta 261:160–166. https://doi.org/10.1016/j.electacta.2017.12.146

    Article  CAS  Google Scholar 

  94. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ (2016) Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev 307:237–254. https://doi.org/10.1016/j.ccr.2015.08.002

    Article  CAS  Google Scholar 

  95. Emami M, Shamsipur M, Saber R, Irajirad R (2014) An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates. Analyst 139(11):2858–2866. https://doi.org/10.1039/C4AN00183D

    Article  CAS  PubMed  Google Scholar 

  96. Ehzari H, Samimi M, Safari M, Gholivand MB (2020) Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J Electroanal Chem 877:114722. https://doi.org/10.1016/j.jelechem.2020.114722

    Article  CAS  Google Scholar 

  97. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65(15):1899–1920. https://doi.org/10.1016/j.addr.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  98. Arkan E, Saber R, Karimi Z, Shamsipur M (2015) A novel antibody-antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta 874:66–74. https://doi.org/10.1016/j.aca.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  99. Liu B, Liu J (2015) Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7(33):13831–13835. https://doi.org/10.1039/C5NR04176G

    Article  CAS  PubMed  Google Scholar 

  100. Boriachek K, Islam MN, Gopalan V, Lam AK, Nguyen N-T, Shiddiky MJA (2017) Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 142(12):2211–2219. https://doi.org/10.1039/C7AN00672A

    Article  CAS  PubMed  Google Scholar 

  101. Freitas M, Nouws HPA, Keating E, Fernandes VC, Delerue-Matos C (2020) Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Microchim Acta 187(3):184. https://doi.org/10.1007/s00604-020-4156-4

    Article  CAS  Google Scholar 

  102. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD, Pittman KA, Spector S (1992) Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetic studies. J Pharm Sci 81(3):309–312. https://doi.org/10.1002/jps.2600810324

    Article  Google Scholar 

  103. Zhang Z, Li C, Fan H, Xiang Q, Xu L, Liu Q, Zhou S, Xie Q, Chen S, Mu G, Cui Y (2018) Prognostic value of baseline serum HER2 extracellular domain level with a cut-off value of 15 ng/mL in patients with breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 172(3):513–521. https://doi.org/10.1007/s10549-018-4942-4

    Article  CAS  PubMed  Google Scholar 

  104. Patris S, De Pauw P, Vandeput M, Huet J, Van Antwerpen P, Muyldermans S, Kauffmann J-M (2014) Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta 130:164–170. https://doi.org/10.1016/j.talanta.2014.06.069

    Article  CAS  PubMed  Google Scholar 

  105. Marques RC, Viswanathan S, Nouws HP, Delerue-Matos C, González-García MB (2014) Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD. Talanta 129:594–599. https://doi.org/10.1016/j.talanta.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  106. Marques RCB, Costa-Rama E, Viswanathan S, Nouws HPA, Costa-García A, Delerue-Matos C, González-García MB (2018) Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sensors Actuators B Chem 255:918–925. https://doi.org/10.1016/j.snb.2017.08.107

    Article  CAS  Google Scholar 

  107. Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Microchim Acta 188(3):78. https://doi.org/10.1007/s00604-021-04735-y

    Article  CAS  Google Scholar 

  108. Tallapragada SD, Layek K, Mukherjee R, Mistry KK, Ghosh M (2017) Development of screen-printed electrode based immunosensor for the detection of HER2 antigen in human serum samples. Bioelectrochemistry 118:25–30. https://doi.org/10.1016/j.bioelechem.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  109. Wang X-Y, Feng Y-G, Wang A-J, Mei L-P, Yuan P-X, Luo X, Feng J-J (2021) A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, au@ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sensors Actuators B Chem 331:129460. https://doi.org/10.1016/j.snb.2021.129460

    Article  CAS  Google Scholar 

  110. Shamsipur M, Emami M, Farzin L, Saber R (2018) A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron 103:54–61. https://doi.org/10.1016/j.bios.2017.12.022

    Article  CAS  PubMed  Google Scholar 

  111. Lah ZMANH, Ahmad SAA, Zaini MS, Kamarudin MA (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617. https://doi.org/10.1016/j.jpba.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  112. Sharma S, Zapatero-Rodríguez J, Saxena R, O'Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85. https://doi.org/10.1016/j.bios.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  113. Mori S, Mori Y, Mukaiyama T, Yamada Y, Sonobe Y, Matsushita H, Sakamoto G, Akiyama T, Ogawa M, Shiraishi M, Toyoshima K, Yamamoto T (1990) In vitro and in vivo release of soluble erbB-2 protein from human carcinoma cells. Japanese journal of cancer research : Gann 81(5):489–494. https://doi.org/10.1111/j.1349-7006.1990.tb02596.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Molina R, Jo J, Filella X, Zanón G, Farrus B, Muñoz M, Latre ML, Pahisa J, Velasco M, Fernandez P, Estapé J, Ballesta AM (1999) C-erbB-2, CEA and CA 15.3 serum levels in the early diagnosis of recurrence of breast cancer patients. Anticancer Res 19(4a):2551–2555

    CAS  PubMed  Google Scholar 

  115. Krainer M, Brodowicz T, Zeillinger R, Wiltschke C, Scholten C, Seifert M, Kubista E, Zielinski CC (1997) Tissue expression and serum levels of HER-2/neu in patients with breast cancer. Oncology 54(6):475–481. https://doi.org/10.1159/000227606

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the Indian Council of Medical Research and Science and Engineering Research Board, Govt. of India for financially supporting the study. The author also thanks Mrs. Kamini Arya and Mr. Nabab Khan for their help in data collection.

Code availability

Not applicable.

Funding

Research in the laboratory of the corresponding author is supported by funds from the Indian Council of Medical Research (65/2/AKT/NIREH/2018-NCD-II) and Science and Engineering Research Board (ECR/2017/003179).

Author information

Authors and Affiliations

Authors

Contributions

RA conceptualized the work, carried out literature survey, extracted data, and wrote the manuscript.

Corresponding author

Correspondence to Rajesh Ahirwar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahirwar, R. Recent advances in nanomaterials-based electrochemical immunosensors and aptasensors for HER2 assessment in breast cancer. Microchim Acta 188, 317 (2021). https://doi.org/10.1007/s00604-021-04963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04963-2

Keywords

Navigation