Skip to main content

Advertisement

Log in

Ratiometric sensing of butyrylcholinesterase activity based on the MnO2 nanosheet–modulated fluorescence of sulfur quantum dots and o-phenylenediamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Butyrylcholinesterase (BChE) can modulate the expression level of cholinesterase, which emerges as an important clinical diagnose index. However, the currently reported assays for BChE are suffering from the problem of interferences. A ratiometric fluorescence assay was developed based on the MnO2 nanosheet (NS)–modulated fluorescence of sulfur quantum dots (S-dots) and o-phenylenediamine (OPD). MnO2 NS can not only quench the fluorescence of blue emissive S-dots, but also enhance the yellow emissive OPD by catalyzing its oxidation reactions. Upon introducing BChE and substrate into the system, their hydrolysate can reduce MnO2 into Mn2+, leading to the fluorescence recovery of S-dots and failure of OPD oxidation. BChE activity can be quantitatively detected by recording the change of fluorescence signals in the blue and yellow regions. A linear relationship is observed between the ratio of F435/F560 and the concentration of BChE in the range 30 to 500 U/L, and a limit of detection of 17.8 U/L has been calculated. The ratiometric fluorescence assay shows an excellent selectivity to acetylcholinesterase and tolerance to various other species. The method developed  provides good detection performances in human serum medium and for screening of  inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Y-C, Chou W-H, Fang C-P, Liu T-H, Tsou H-H, Wang Y et al (2019) Serum level and activity of butylcholinesterase: a biomarker for post-stroke dementia. J Clin Med 8:1778

    Article  CAS  Google Scholar 

  2. Yang Y, Liu H, Chen Z, Wu T, Jiang Z, Tong L, Tang B (2019) A simple 3D-printed enzyme reactor paper spray mass spectrometry platform for detecting BuChE activity in human serum. Anal Chem 91:12874–12881

    Article  CAS  Google Scholar 

  3. Williams A, Zhou S, Zhan C-G (2019) Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg Med Chem Lett 29:126754

    Article  CAS  Google Scholar 

  4. Therkorn J, Drewry DG III, Tiburzi O, Astatke M, Young C, Rainwater-Lovett K (2020) Review of biomarkers and analytical methods for organophosphate pesticides and applicability to nerve agents. Mil Med 185:e414–ee21

    Article  Google Scholar 

  5. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  6. Liu D-M, Xu B, Dong C (2021) Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications, TrAC. Trends Anal Chem 142:116320

    Article  CAS  Google Scholar 

  7. Li Q, Wu J, Yang Q, Li H, Li F (2021) pH and redox dual-response disulfide bond-functionalized red-emitting gold nanoclusters for monitoring the contamination of organophosphorus pesticides in foods. Anal Chem 93:7362–7368

    Article  CAS  Google Scholar 

  8. Nechaeva N, Prokopkina T, Makhaeva G, Rudakova E, Boltneva N, Dishovsky C, Eremenko A, Kurochkin I (2018) Quantitative butyrylcholinesterase activity detection by surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 259:75–82

    Article  CAS  Google Scholar 

  9. Ding J, Qin W (2009) Potentiometric sensing of butyrylcholinesterase based on in situ generation and detection of substrates. Chem Commun:971–973

  10. Chen G, Feng H, Jiang X, Xu J, Pan S, Qian Z (2018) Redox-controlled fluorescent nanoswitch based on reversible disulfide and its application in butyrylcholinesterase activity assay. Anal Chem 90:1643–1651

    Article  CAS  Google Scholar 

  11. Zhang Q, Fu C, Guo X, Gao J, Zhang P, Ding C (2021) Fluorescent determination of butyrylcholinesterase activity and its application in biological imaging and pesticide residue detection. ACS Sens 6:1138–1146

    Article  CAS  Google Scholar 

  12. Yoo S, Han MS (2019) A fluorescent probe for butyrylcholinesterase activity in human serum based on a fluorophore with specific binding affinity for human serum albumin. Chem Commun 55:14574–14577

    Article  CAS  Google Scholar 

  13. Deng W, Chen P, Hu P, He Z, Zhang M, Yuan X, Huang K (2019) Enzymatic reaction modulated synthesis of quantum dots for visual detection of cholinesterase activity and inhibitor. Sensors Actuators B Chem 292:180–186

    Article  CAS  Google Scholar 

  14. Zhang N, Si Y, Sun Z, Chen L, Li R, Qiao Y, Wang H (2014) Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold–silver nanoclusters with “silver effect”-enhanced red fluorescence. Anal Chem 86:11714–11721

    Article  CAS  Google Scholar 

  15. Su D, Li H, Yan X, Lin Y, Lu G (2021) Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends Anal Chem 134:116126

    Article  CAS  Google Scholar 

  16. Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y (2019) Upconversion nanoprobes: recent advances in sensing applications. Anal Chem 91:548–568

    Article  CAS  Google Scholar 

  17. Shen L, Wang H, Liu S, Bai Z, Zhang S, Zhang X, Zhang C (2018) Assembling of sulfur quantum dots in fission of sublimed sulfur. J Am Chem Soc 140:7878–7884

    Article  CAS  Google Scholar 

  18. Wang Z, Zhang C, Wang H, Xiong Y, Yang X, Shi Y-e et al (2020) Two-step oxidation synthesis of sulfur with a red aggregation-induced emission. Angew Chem Int Ed 59:9997–10002

    Article  CAS  Google Scholar 

  19. Song Y, Tan J, Wang G, Gao P, Lei J, Zhou L (2020) Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots. Chem Sci 11:772–777

    Article  CAS  Google Scholar 

  20. Zhang Z-Y, Xu W-W, Xu W-S, Niu J, Sun X-H, Liu Y (2020) A synergistic enhancement strategy for realizing ultralong and efficient room-temperature phosphorescence. Angew Chem Int Ed 59:18748–18754

    Article  CAS  Google Scholar 

  21. Pal A, Arshad F, Sk MP (2020) Emergence of sulfur quantum dots: unfolding their synthesis, properties, and applications. Adv Colloid Interf Sci 285:102274

    Article  CAS  Google Scholar 

  22. Gao P, Wang G, Zhou L (2020) Luminescent sulfur quantum dots: synthesis, properties and potential applications. ChemPhotoChem 4:5235–5244

    Article  CAS  Google Scholar 

  23. Chen J, Meng H, Tian Y, Yang R, Du D, Li Z et al (2019) Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz 4:321–338

    Article  CAS  Google Scholar 

  24. Wen J, Yang K, Sun S (2020) MnO2-based nanosystems for cancer therapy. Chem Commun 56:7065–7079

    Article  CAS  Google Scholar 

  25. Yan X, Song Y, Zhu C, Li H, Du D, Su X et al (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90:2618–2624

    Article  CAS  Google Scholar 

  26. Ma Y, Zhang Y, Li X, Yang P, Yue J-Y, Jiang Y, Tang B (2020) Linker-eliminated nano metal–organic framework fluorescent probe for highly selective and sensitive phosphate ratiometric detection in water and body fluids. Anal Chem 92:3722–3727

    Article  CAS  Google Scholar 

  27. Tan H, Wu X, Weng Y, Lu Y, Huang Z-Z (2020) Self-assembled FRET nanoprobe with metal–organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem 92:3447–3454

    Article  CAS  Google Scholar 

  28. Fan D, Shang C, Gu W, Wang E, Dong S (2017) Introducing ratiometric fluorescence to MnO2 nanosheet-based biosensing: a simple, label-free ratiometric fluorescent sensor programmed by cascade logic circuit for ultrasensitive GSH detection. ACS Appl Mater Interfaces 9:25870–25877

    Article  CAS  Google Scholar 

  29. Wang S, Sun J, Zhao J, Lu S, Yang X (2018) Photo-induced electron transfer-based versatile platform with G-quadruplex/hemin complex as quencher for construction of DNA logic circuits. Anal Chem 90:3437–3442

    Article  CAS  Google Scholar 

  30. Wang H, Wang Z, Xiong Y, Kershaw SV, Li T, Wang Y, Zhai Y, Rogach AL (2019) Hydrogen peroxide assisted synthesis of highly luminescent sulfur quantum dots. Angew Chem Int Ed 58:7040–7044

    Article  CAS  Google Scholar 

  31. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc 130:15938–15943

    Article  CAS  Google Scholar 

  32. Lei J, Huang Z, Gao P, Sun J, Zhou L (2021) Polyvinyl alcohol enhanced fluorescent sulfur quantum dots for highly sensitive detection of Fe3+ and temperature in cells. Part Part Syst Charact 38:2000332

    Article  CAS  Google Scholar 

  33. Shen L, Wei J, Liu Z, Bai Z, Li Y, Zhang D, Zhang C (2020) Stable layered sulfur nanosheets prepared by one-step liquid-phase exfoliation of natural sublimed sulfur with bovine serum albumin for photocatalysis. Chem Mater 32:10476–10481

    Article  CAS  Google Scholar 

  34. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta, Part A 135:536–539

    Article  CAS  Google Scholar 

  35. 2006 Mechanisms and dynamics of fluorescence quenching, in: J.R. Lakowicz (Ed.) Principles of fluorescence spectroscopy, Springer US, Boston, pp. 331–51

  36. Rajendiran N, Thulasidhasan J (2016) Spectroscopic, electrochemical and molecular docking studies of dothiepin and doxepin with bovine serum albumin and DNA base. Luminescence 31:1438–1447

    Article  CAS  Google Scholar 

  37. Li W, Rong Y, Wang J, Li T, Wang Z (2020) MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 169:112605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21804030), the Natural Science Foundation of Hebei Province (B2020201082, B2019201067), the Outstanding Youth Project of N\atural Science Foundation of Hebei Province (B2020201060), One Hundred Talent Project of Hebei Province (E2019050011), the Science and Technology Project of Hebei Education Department (BJ2020033), and the Natural Science Interdisciplinary Research Program of Hebei University (DXK201906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-e Shi or Zhenguang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Li, P., Jiao, M. et al. Ratiometric sensing of butyrylcholinesterase activity based on the MnO2 nanosheet–modulated fluorescence of sulfur quantum dots and o-phenylenediamine. Microchim Acta 188, 294 (2021). https://doi.org/10.1007/s00604-021-04949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04949-0

Keywords

Navigation