Skip to main content
Log in

Combination of ultrathin micro-patterned MXene and PEDOT: Poly(styrenesulfonate) enables organic electrochemical transistor for amperometric determination of survivin protein in children osteosarcoma

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrathin micro-patterned MXene/PEDOT:PSS-based organic electrochemical transistor biosensor was constructed, which can significantly amplify the amperometric signal and transistor’s performance. A novel interdigitated OECTs biosensor has been developed for reliable determination of survivin for the following considerations: (1) The synergistic effect of intercalated MXene and ionic PEDOT:PSS enhanced the mobility and volumetric capacitance of OECTs biosensor. (2) Compared with the best previous literatures, our assay demonstrated enhanced detection limit of survivin down to 10 pg mL−1, as well as satisfactory selectivity, reproducibility, and reliability. (3) Comparison of OECTs against commercial ELISA kit yielded favorable linearity (Y = 1.0015*X + 0.0039) and correlation coefficient (R2 = 0.9717). Those advantages are expected to pave the way to design of an OECTs biosensor with robustness, non-invasiveness, and miniaturization for the point-of-care applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Isakoff MS, Bielack SS, Meltzer P, Gorlick R (2015) Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol Off J Am Soc Clin Oncol 33:3029–3035. https://doi.org/10.1200/JCO.2014.59.4895

    Article  CAS  Google Scholar 

  2. Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu H-Y, Spillinger A, Shah AT, Tanasa B, Straessler K, Hazard FK, Spunt SL, Marina N, Kim GE, Cho S-J, Avedian RS, Mohler DG, Kim M-O, DuBois SG, Hawkins DS, Sweet-Cordero EA (2019) Genome-informed targeted therapy for osteosarcoma. Cancer Discov 9:46–63. https://doi.org/10.1158/2159-8290.CD-17-1152

    Article  CAS  PubMed  Google Scholar 

  3. Janus AM, Faryna M, Haberko K, Rakowska A, Panz T (2008) Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchim Acta 161:349–353. https://doi.org/10.1007/s00604-007-0864-2

    Article  CAS  Google Scholar 

  4. Wang X, Qin G, Liang X, Wang W, Wang Z, Liao D, Zhong L, Zhang R, Zeng Y-X, Wu Y, Kang T (2020) Targeting the CK1α/CBX4 axis for metastasis in osteosarcoma. Nat Commun 11:1141. https://doi.org/10.1038/s41467-020-14870-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kansara M, Teng MW, Smyth MJ, Thomas DM (2014) Translational biology of osteosarcoma. Nat Rev Cancer 14:722–735. https://doi.org/10.1038/nrc3838

    Article  CAS  PubMed  Google Scholar 

  6. Gianferante DM, Mirabello L, Savage SA (2017) Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol 13:480–491. https://doi.org/10.1038/nrendo.2017.16

    Article  CAS  PubMed  Google Scholar 

  7. Shoeneman JK, Ehrhar EJ 3rd, Eickhoff JC, Charles JB, Powers BE, Thamm DH (2012) Expression and function of survivin in canine osteosarcoma. Cancer Res 72:249–259. https://doi.org/10.1158/0008-5472.CAN-11-2315

    Article  CAS  PubMed  Google Scholar 

  8. Gu J, Ji Z, Li D, Dong Q (2019) Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and Survivin in human osteosarcoma. Acta Biochim Biophys Sin Shanghai 51:59–67. https://doi.org/10.1093/abbs/gmy146

    Article  CAS  PubMed  Google Scholar 

  9. Mariani F, Quast T, Andronescu C, Gualandi I, Fraboni B, Tonelli D, Scavetta E, Schuhmann W (2020) Needle-type organic electrochemical transistor for spatially resolved detection of dopamine. Microchim Acta 187:1–11. https://doi.org/10.1007/s00604-020-04352-1

    Article  CAS  Google Scholar 

  10. Peng J, He T, Sun Y, Liu Y, Cao Q, Wang Q, Tang H (2018) An organic electrochemical transistor for determination of microRNA21 using gold nanoparticles and a capture DNA probe. Microchim Acta 185:2–10. https://doi.org/10.1007/s00604-018-2944-x

    Article  CAS  Google Scholar 

  11. Yang D, Welm A, Bishop JM (2004) Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci U S A 101:15100–15105. https://doi.org/10.1073/pnas.0406665101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Teng Z, Wang Y, Gao P, Chen J (2015) Prognostic significance of survivin expression in osteosarcoma patients: a meta-analysis. Med Sci Monit Int Med J Exp Clin Res 21:2877

    Google Scholar 

  13. Khan S, Aspe JR, Asumen MG, Almaguel F, Odumosu O, Acevedo-Martinez S, De Leon M, Langridge WHR, Wall NR (2009) Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. Br J Cancer 100:1073–1086. https://doi.org/10.1038/sj.bjc.6604978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stobiecka M, Chalupa A, Dworakowska B (2016) Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies. Biosens Bioelectron 84:37–43. https://doi.org/10.1016/j.bios.2015.10.041

    Article  CAS  PubMed  Google Scholar 

  15. Stobiecka M, Chalupa A (2015) Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem B 119:13227–13235. https://doi.org/10.1021/acs.jpcb.5b07778

    Article  CAS  PubMed  Google Scholar 

  16. Sun H, Vagin M, Wang S, Crispin X, Forchheimer R, Berggren M, Fabiano S (2018) Complementary logic circuits based on high-performance N-type organic electrochemical transistors. Adv Mater 30:1–7. https://doi.org/10.1002/adma.201704916

    Article  CAS  Google Scholar 

  17. Savagian LR, Österholm AM, Ponder JF, Barth KJ, Rivnay J, Reynolds JR (2018) Balancing charge storage and mobility in an oligo(ether) functionalized dioxythiophene copolymer for organic- and aqueous-based electrochemical devices and transistors. Adv Mater 30:1–6. https://doi.org/10.1002/adma.201804647

    Article  CAS  Google Scholar 

  18. Fu Y, Wang N, Yang A, Law HK w, Li L, Yan F (2017) Highly sensitive detection of protein biomarkers with organic electrochemical transistors. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201703787

    Article  CAS  Google Scholar 

  19. Méhes G, Roy A, Strakosas X, Berggren M, Stavrinidou E, Simon DT (2020) Organic microbial electrochemical transistor monitoring extracellular electron transfer. Adv Sci 7:2000641. https://doi.org/10.1002/advs.202000641

    Article  CAS  Google Scholar 

  20. Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, Yue H, Kim J, Luo J, Cui S, Yan F, Shi P (2020) Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. Elife 9. https://doi.org/10.7554/eLife.50345

  21. Song J, Lin P, Ruan Y-F, Zhao W-W, Wei W, Hu J, Ke S, Zeng X, Xu J-J, Chen H-Y, Ren W, Yan F (2018) Organic photo-electrochemical transistor-based biosensor: a proof-of-concept study toward highly sensitive DNA detection. Adv Healthc Mater 7:e1800536. https://doi.org/10.1002/adhm.201800536

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Cao Q, Liu Y, He T, Liu J, Huang S, Tang H, Ma M (2020) Organic electrochemical transistor for in situ detection of H(2)O(2) released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal Chem 92:908–915. https://doi.org/10.1021/acs.analchem.9b03718

    Article  CAS  PubMed  Google Scholar 

  23. Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O (2019) Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration. Adv Healthc Mater 8:e1901321. https://doi.org/10.1002/adhm.201901321

    Article  CAS  PubMed  Google Scholar 

  24. Ohayon D, Nikiforidis G, Savva A, Giugni A, Wustoni S, Palanisamy T, Chen X, Maria IP, Di Fabrizio E, Costa PMFJ, McCulloch I, Inal S (2020) Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat Mater 19:456–463. https://doi.org/10.1038/s41563-019-0556-4

    Article  CAS  PubMed  Google Scholar 

  25. Paterson AF, Savva A, Wustoni S, Tsetseris L, Paulsen BD, Faber H, Emwas AH, Chen X, Nikiforidis G, Hidalgo TC, Moser M, Maria IP, Rivnay J, McCulloch I, Anthopoulos TD, Inal S (2020) Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-16648-0

    Article  CAS  Google Scholar 

  26. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186. https://doi.org/10.1007/s00604-012-0923-1

    Article  CAS  Google Scholar 

  27. Li F, Liu Y, Shi X, Li H, Wang C, Zhang Q, Ma R, Liang J (2020) Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability. Nano Lett 20:6176–6184. https://doi.org/10.1021/acs.nanolett.0c02519

    Article  CAS  PubMed  Google Scholar 

  28. Ghaemmaghami M, Yamini Y, Mousavi KZ (2020) Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Microchim Acta 187:1–8. https://doi.org/10.1007/s00604-020-4123-0

    Article  CAS  Google Scholar 

  29. Shi YE, Han F, Xie L, Zhang C, Li T, Wang H, Lai WF, Luo S, Wei W, Wang Z, Huang Y (2020) A MXene of type Ti3C2Tx functionalized with copper nanoclusters for the fluorometric determination of glutathione. Microchim Acta 187:1–9. https://doi.org/10.1007/s00604-019-4000-x

    Article  CAS  Google Scholar 

  30. Zhang J, Seyedin S, Qin S, Wang Z, Moradi S, Yang F, Lynch PA, Yang W, Liu J, Wang X, Razal JM (2019) Highly conductive Ti(3) C(2) T(x) MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small. 15:e1804732. https://doi.org/10.1002/smll.201804732

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X (2018) Ultrathin biomimetic polymeric Ti(3)C(2)T (x) MXene composite films for electromagnetic interference shielding. ACS Appl Mater Interfaces 10:44787–44795. https://doi.org/10.1021/acsami.8b18347

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Yang C, Duan M, Tang Y, Zhu J (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028. https://doi.org/10.1016/j.bios.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  33. Li Q, Zhong B, Zhang W, Jia Z, Jia D, Qin S, Wang J, Razal JM, Wang X (2019) Ti(3)C(2) MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale. 11:14712–14719. https://doi.org/10.1039/c9nr03661j

    Article  CAS  PubMed  Google Scholar 

  34. Serafín V, Valverde A, Garranzo-Asensio M, Barderas R, Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Microchim Acta 186. https://doi.org/10.1007/s00604-019-3531-5

  35. Hurot C, Brenet S, Buhot A, Barou E, Belloir C, Briand L, Hou Y (2019) Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging. Biosens Bioelectron 123:230–236. https://doi.org/10.1016/j.bios.2018.08.072

    Article  CAS  PubMed  Google Scholar 

  36. Swynnerton NF, Huelle BK, Mangold DJ, Ludden TM (1986) A method for the combined measurement of ethiofos and WR-1065 in plasma: application to pharmacokinetic experiments with ethiofos and its metabolites. Int J Radiat Oncol Biol Phys 12:1495–1499. https://doi.org/10.1016/0360-3016(86)90202-6

    Article  CAS  PubMed  Google Scholar 

  37. Nishitani S, Sakata T (2020) Enhancement of signal-to-noise ratio for serotonin detection with well-designed nanofilter-coated potentiometric electrochemical biosensor. ACS Appl Mater Interfaces 12:14761–14769. https://doi.org/10.1021/acsami.9b19309

    Article  CAS  PubMed  Google Scholar 

  38. Ahmad K, Mohammad A, Mathur P, Mobin SM (2016) Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta 215:435–446

    Article  CAS  Google Scholar 

  39. Li Z, Yin J, Gao C, Qiu G, Meng A, Li Q (2019) The construction of electrochemical aptasensor based on coral-like poly-aniline and Au nano-particles for the sensitive detection of prostate specific antigen. Sensors Actuators B295:93–100

    Article  Google Scholar 

Download references

Funding

The research leading to these results received funding from Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition (17DZ2272000).

Author information

Authors and Affiliations

Authors

Contributions

Ping Xu: Conceptualization, methodology, investigation, writing-original draft, and formal analysis. Chunwen Lu: Investigation, writing-original draft, and software. Dahui Wanga: Writing-original draft. Dong Fu: Methodology, supervision, and writing-review and editing.

Corresponding authors

Correspondence to Dahui Wang or Dong Fu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.28 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Lu, C., Wang, D. et al. Combination of ultrathin micro-patterned MXene and PEDOT: Poly(styrenesulfonate) enables organic electrochemical transistor for amperometric determination of survivin protein in children osteosarcoma. Microchim Acta 188, 301 (2021). https://doi.org/10.1007/s00604-021-04947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04947-2

Keywords

Navigation