Skip to main content
Log in

TiO2/MXene-PVA/GO hydrogel-based electrochemical sensor for neurological disorder screening via urinary norepinephrine detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hydrogel based on titanium dioxide/MXene with polyvinyl alcohol/graphene oxide (TiO2/MXene-PVA/GO) composite was successfully formulated and applied to modify a screen-printed carbon electrode (SPCE) for urinary norepinephrine (NE) detection. The characterization confirmed that a nanocomposite hydrogel structure of TiO2/MXene-PVA/GO was formed. The as-prepared hydrogel substantially enhanced the sensor performances due to electrocatalytic activity of TiO2, high conductivity of MXene, and auto-sample preconcentration via PVA/GO hydrogel. The electrochemical behavior of NE was investigated by cyclic voltammetry and amperometry. Under optimized conditions, the TiO2/MXene-PVA/GO hydrogel/SPCE response due to the oxidation of NE at +0.4 V (vs. Ag|AgCl) is proportional to the concentration of NE over 0.01 to 1.00 μM (R2 = 0.9968) and 1.00 to 60.0 μM (R2 = 0.9936) ranges with a detection limit (3σ) of 6 nM without interferent effect from common interferences in urine. Furthermore, this sensor was employed for urinary NE determination and validated by high performance liquid chromatography (HPLC) with a UV detector at 280 nm; the average recovery was found to be 97.6 to 102%, with a relative standard deviation (RSD) less than 4.9%. This device was sensitive enough to evaluate an early stage of neurological disorder via detecting clinically relevant NE level. Eventually, it was integrated with pantyliners which could be a potential wearable sensor in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Samdani KJ, Samdani JS, Kim NH, Lee JH (2016) FeMoO4 based, enzyme-free electrochemical biosensor for ultrasensitive detection of norepinephrine. Biosens Bioelectron 81:445–453

    Article  CAS  Google Scholar 

  2. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry 13:10–23

    Article  CAS  Google Scholar 

  3. Queiroz DFD et al (2018) Electrochemical determination of norepinephrine by means of modified glassy carbon electrodes with carbon nanotubes and magnetic nanoparticles of cobalt ferrite. Sensors 18(4):1223

    Article  Google Scholar 

  4. Goldstein DS, Holmes C, Sharabi Y (2012) Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 135(6):1900–1913

    Article  Google Scholar 

  5. Duncan MW, Compton P, Lazarus L, Smythe GA (1988) Measurement of norepinephrine and 3, 4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma. N Engl J Med 319(3):136–142

    Article  CAS  Google Scholar 

  6. Boobphahom S, Ruecha N, Rodthongkum N, Chailapakul O, Remcho VT (2019) A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal Chim Acta 1083:110–118

    Article  CAS  Google Scholar 

  7. Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. TrAC Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  8. Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, Vikartovska A, Sasinkova V, Filip J, Kasak P, Jerigova M, Velic D, Mahmoud KA, Tkac J (2017) Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim Acta 235:471–479

    Article  CAS  Google Scholar 

  9. Neampet S, Ruecha N, Qin J, Wonsawat W, Chailapakul O, Rodthongkum N (2019) A nanocomposite prepared from platinum particles, polyaniline and a Ti 3 C 2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim Acta 186(12):752

    Article  CAS  Google Scholar 

  10. Xu Z, Sun Y, Zhuang Y, Jing W, Ye H, Cui Z (2018) Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. J Membr Sci 564:35–43

    Article  CAS  Google Scholar 

  11. Boobphahom S, Rattanawaleedirojn P, Boonyongmaneerat Y, Rengpipat S, Chailapakul O, Rodthongkum N (2019) TiO2 sol/graphene modified 3D porous Ni foam: a novel platform for enzymatic electrochemical biosensor. J Electroanal Chem 833:133–142

    Article  CAS  Google Scholar 

  12. Li Y, Hsu P-C, Chen S-M (2012) Multi-functionalized biosensor at WO3–TiO2 modified electrode for photoelectrocatalysis of norepinephrine and riboflavin. Sensors Actuators B Chem 174:427–435

    Article  CAS  Google Scholar 

  13. Nemade K, Dudhe P, Tekade P (2018) Enhancement of photovoltaic performance of polyaniline/graphene composite-based dye-sensitized solar cells by adding TiO2 nanoparticles. Solid State Sci 83:99–106

    Article  CAS  Google Scholar 

  14. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21(28):10399–10406

    Article  CAS  Google Scholar 

  15. Huang Y, Zhang M, Ruan W (2014) High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2(27):10508–10515

    Article  CAS  Google Scholar 

  16. Thomas J, Khanam R, Vohora D (2015) A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. Pharm Biol 53(10):1539–1544

    Article  CAS  Google Scholar 

  17. Qiu J, Jin Z, Liu Z, Liu X, Liu G, Wu W, Zhang X, Gao X (2007) Fabrication of TiO2 nanotube film by well-aligned ZnO nanorod array film and sol–gel process. Thin Solid Films 515(5):2897–2902

    Article  CAS  Google Scholar 

  18. Saxena R, Bhatt S (2018) Molecular association studies on polyvinyl alcohol at different concentrations. Adv Mater Sci Eng 2018:1–5

    Article  Google Scholar 

  19. Diaz AF, Castillo JI, Logan JA, Lee WY (1981) Electrochemistry of conducting polypyrrole films. J Electroanal Chem Interfacial Electrochem 129(1–2):115–132

    Article  CAS  Google Scholar 

  20. McQuillan AJ, Reid MR (1985) Cyclic voltammetric studies of a thionine coated pyrolytic graphite electrode. J Electroanal Chem Interfacial Electrochem 194(2):237–245

    Article  CAS  Google Scholar 

  21. Chazaro-Ruiz LF, Olvera-Sosa M, Vidal G, Rangel-Mendez JR, Palestino G, Perez F, Zhang W (2020) Synthesis of bamboo-like multiwall carbon nanotube–poly (acrylic acid-co-itaconic acid)/NaOH composite hydrogel and its potential application for electrochemical detection of cadmium (II). Biosensors 10(10):147

    Article  CAS  Google Scholar 

  22. Wang F et al (2016) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep 6(1):1–8

    Article  Google Scholar 

  23. Jiang LC, Zhang WD (2009) Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 21(8):988–993

    Article  CAS  Google Scholar 

  24. Rahman MM, Lopa NS, Ju MJ, Lee JJ (2017) Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J Electroanal Chem 792:54–60

    Article  CAS  Google Scholar 

  25. Cheng M, Zhang X, Wang M, Huang H, Ma J (2017) A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J Electroanal Chem 786:1–7

    Article  CAS  Google Scholar 

  26. Brett CM, Oliveira-Brett AM (2011) Electrochemical sensing in solution—origins, applications and future perspectives. J Solid State Electrochem 15(7):1487–1494

    Article  CAS  Google Scholar 

  27. Malode SJ, Abbar JC, Shetti NP, Nandibewoor ST (2012) Voltammetric oxidation and determination of loop diuretic furosemide at a multi-walled carbon nanotubes paste electrode. Electrochim Acta 60:95–101

    Article  CAS  Google Scholar 

  28. Tajik S (2018) Application of cu (II) nanocomplex modified graphite screen printed electrode to improve the sensitivity for norepinephrine detection. Analytical & Bioanalytical Electrochemistry 10(6):778–788

    CAS  Google Scholar 

  29. Goyal RN, Aziz MA, Oyama M, Chatterjee S, Rana ARS (2011) Nanogold based electrochemical sensor for determination of norepinephrine in biological fluids. Sensors Actuators B Chem 153(1):232–238

    Article  CAS  Google Scholar 

  30. Samdani KJ, Joh DW, Rath MK, Lee KT (2017) Electrochemical mediatorless detection of norepinephrine based on MoO3 nanowires. Electrochim Acta 252:268–274

    Article  CAS  Google Scholar 

  31. Chen J, Huang H, Zeng Y, Tang H, Li L (2015) A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine. Biosens Bioelectron 65:366–374

    Article  CAS  Google Scholar 

  32. Aflatoonian MR et al (2020) Development of a new electrochemical sensor based on modified carbon paste electrode for simultaneous determination of norepinephrine and acetaminophen in real samples. Eurasian Chemical Communications 2(4):541–555

    Google Scholar 

  33. Salmanpour S, Tavana T, Pahlavan A, Khalilzadeh MA, Ensafi AA, Karimi-Maleh H, Beitollahi H, Kowsari E, Zareyee D (2012) Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater Sci Eng C 32(7):1912–1918

    Article  CAS  Google Scholar 

  34. Liu A-L, Zhang SB, Chen W, Lin XH, Xia XH (2008) Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Biosens Bioelectron 23(10):1488–1495

    Article  CAS  Google Scholar 

  35. Gao L, Yue W, Tao S, Fan L (2013) Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29(3):957–964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Siraprapa Boobphahom would like to thank Rachadapisek Somphot Fund, Chulalongkorn University for her postdoctoral fellowship.

Funding

This research is funded by National Research Council of Thailand (NRCT) : N41A640074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadnudda Rodthongkum.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• TiO2/MXene-PVA/GO hydrogel modified electrode was created as a urinary NE sensor.

• The material combination enhanced the overall sensor performances offering two linear ranges of 0.01–1.00 μM and 1.00–60.0 μM with LOD of 8.0 nM.

• The sensor sensitivity was sufficient for the detection of concerned NE level in neurological disease screening.

• This sensor was successfully integrated with pantyliners for urinary NE detection validated by a HPLC-UV method.

Supplementary information

ESM 1

(DOCX 2650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boobphahom, S., Siripongpreda, T., Zhang, D. et al. TiO2/MXene-PVA/GO hydrogel-based electrochemical sensor for neurological disorder screening via urinary norepinephrine detection. Microchim Acta 188, 387 (2021). https://doi.org/10.1007/s00604-021-04945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04945-4

Keywords

Navigation