Skip to main content
Log in

Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A facile and versatile competitive electrochemical aptasensor for tobramycin (TOB) detection is described using electrochemical-deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework (AuNPs/P-MOF) as signal-amplification platform and a DNA probe labeled with methylene blue (MB) at the 3′-end (MB-Probe) as a signal producer. First, F-Probe (short complementary DNA strands of both the aptamer and the MB-Probe label with a sulfhydryl group at the 5′-end) was immobilized on the AuNPs/P-MOF modified electrode as detection probes, which competed with TOB in binding to the aptamer. TOB-aptamer binding resulted in F-Probe remaining unhybridized on the electrode surface, so that a significant current response was generated by hybridizing with MB-Probe instead. The developed strategy showed favorable repeatability, with a relative standard deviation (RSD) of 4.3% computed over five independent assays, and high stability, with only 6.8% degradation after 15 days of storage. Under optimal conditions, the proposed aptamer strategy exhibited a linear detection range from 100 pM to 500 nM with a limit of detection (LOD) of 56 pM (S/N = 3). The electrochemical aptasensor demonstrated remarkable selectivity, and its feasibility for accurate and quantitative detection of TOB in milk samples was confirmed (RSD < 4.5%). Due to its simple design, easy operation, and high sensitivity and selectivity, the proposed method could expect to detect other antibiotics by replacing the aptamers. In summary, this study provides a simple and effective new strategy for electrochemical aptasening based on MOF-based sensing interface.

Graphical abstract

Scheme illustration of label-free competitive electrochemical aptamer-based detection of tobramycin based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework as signal-amplification platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and material are available within this paper.

References

  1. Cháfer-Pericás C, Maquieira Á, Puchades R (2010) Fast screening methods to detect antibiotic residues in food samples. TrAC Trends Anal Chem 29:1038–1049. https://doi.org/10.1016/j.trac.2010.06.004

    Article  CAS  Google Scholar 

  2. Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R (2017) Reducing antimicrobial use in food animals consider user fees and regulatory caps on veterinary use. Science 357:1350–1352. https://doi.org/10.1126/science.aao1495

    Article  CAS  PubMed  Google Scholar 

  3. Ma Q, Wang Y, Jia J, Xiang Y (2018) Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chem 249:98–103. https://doi.org/10.1016/j.foodchem.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  4. Barco S, Mesini A, Barbagallo L, Maffia A, Tripodi G, Pea F, Saffioti C, Castagnola E, Cangemi G (2020) A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: application to critically ill pediatric patients. J Pharmaceut Biomed Anal 186:113273. https://doi.org/10.1016/j.jpba.2020.113273

    Article  CAS  Google Scholar 

  5. Orizondo RA, Fabiilli ML, Morales MA, Cook KE (2016) Effects of emulsion composition on pulmonary tobramycin delivery during antibacterial perfluorocarbon ventilation. J Aerosol Med Pulm D 29:251–259. https://doi.org/10.1089/jamp.2015.1235

    Article  CAS  Google Scholar 

  6. Jiang L, Wei DL, Zeng K, Shao J, Zhu F, Du DL (2018) An enhanced direct competitive immunoassay for the detection of kanamycin and tobramycin in milk using multienzyme-particle amplification. Food Anal Method 11:2066–2075. https://doi.org/10.1007/s12161-018-1185-2

    Article  Google Scholar 

  7. Kaufmann A, Butcher P, Maden K (2012) Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices. Anal Chim Acta 711:46–53. https://doi.org/10.1016/j.aca.2011.10.042

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Jiang YN, Luo J, Guo XY, Ying Y, Wen Y, Yang HF, Wu YP (2021) A SnO2/Bi2S3- based photoelectrochemical aptasensor for sensitive detection of tobramycin in milk. Food Chem 344:128716. https://doi.org/10.1016/j.foodchem.2020.128716

    Article  CAS  PubMed  Google Scholar 

  9. Yan S, Lai X, Wang Y, Ye N, Xiang Y (2019) Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow’s milk based on resonance scattering spectra and nanogold catalytic amplification. Food Chem 295:36–41. https://doi.org/10.1016/j.foodchem.2019.05.110

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Zhang M, Xu Y, Wen Z, Ding C, Guo Y, Hao N, Wang K (2020) Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection. Sensor Actuators B-Chem 321:128464. https://doi.org/10.1016/j.snb.2020.128464

    Article  CAS  Google Scholar 

  11. Garcia-Guzman JJ, Perez-Rafols C, Cuartero M, Crespo GA (2021) Microneedle based electrochemical (bio)sensing: towards decentralized and continuous health status monitoring. Trac-Trends Anal Chem 135:116148. https://doi.org/10.1016/j.trac.2020.116148

    Article  CAS  Google Scholar 

  12. Du H, Xie Y, Wang J (2021) Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. Trac-Trends Anal Chem 135:116178. https://doi.org/10.1016/j.trac.2020.116178

    Article  CAS  Google Scholar 

  13. Lin Z, Liu X, Li Y, Li C, Yang L, Ma K, Zhang Z, Huang H (2021) Electrochemical aptasensor based on Mo2C/Mo2N and gold nanoparticles for determination of chlorpyrifos. Microchim Acta 188:170. https://doi.org/10.1007/s00604-021-04830-0

    Article  CAS  Google Scholar 

  14. Walther BK, Dinu CZ, Guldi DM, Sergeyev VG, Creager SE, Cooke JP, Guiseppi-Elie A (2020) Nanobiosensing with graphene and carbon quantum dots: recent advances. Mater Today 39:23–46. https://doi.org/10.1016/j.mattod.2020.04.008

    Article  CAS  Google Scholar 

  15. Negahdary M (2020) Electrochemical aptasensors based on the gold nanostructures. Talanta 216. https://doi.org/10.1016/j.talanta.2020.120999

  16. Kang M, Li Z, Hu M, Oderinde O, Hu B, He L, Wang M, Fu G, Zhang Z, Du M (2020) Bimetallic MnCo oxide nanohybrids prepared from Prussian blue analogue for application as impedimetric aptasensor carrier to detect myoglobin. Chem Eng J 395. https://doi.org/10.1016/j.cej.2020.125117

  17. Wang SJ, Li ZZ, Duan FH, Hu B, He LH, Wang MH, Zhou N, Jia QJ, Zhang ZH (2019) Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: label-free aptasensor for ultrasensitive tobramycin detection. Anal Chim Acta 1047:150–162. https://doi.org/10.1016/j.aca.2018.09.064

    Article  CAS  PubMed  Google Scholar 

  18. Xue Y, Zheng S, Xue H, Pang H (2019) Metal-organic framework composites and their electrochemical applications. J Mater Chem A 7:7301–7327. https://doi.org/10.1039/c8ta12178h

    Article  CAS  Google Scholar 

  19. Li CW, Sun XJ, Yao YG, Hong G (2021) Recent advances of electrically conductive metal-organic frameworks in electrochemical applications. MaterToday Nano 13:100105. https://doi.org/10.1016/j.mtnano.2020.100105

    Article  Google Scholar 

  20. Cruz-Navarro JA, Hernandez-Garcia F, Romero GAA (2020) Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord Chem Rev 412:213263. https://doi.org/10.1016/j.ccr.2020.213263

    Article  CAS  Google Scholar 

  21. Song Y, Xu M, Liu X, Li Z, Wang C, Jia Q, Zhang Z, Du M (2021) A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal-organic framework (MOF). Electrochimica Acta 368:137609. https://doi.org/10.1016/j.electacta.2020.137609

    Article  CAS  Google Scholar 

  22. Li J, Liu L, Ai Y, Liu Y, Sun H, Liang Q (2020) Self-polymerized dopamine-decorated au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl Mater Inter 12:5500–5510. https://doi.org/10.1021/acsami.9b19161

    Article  CAS  Google Scholar 

  23. Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21:2108–2117. https://doi.org/10.1002/adfm.201002517

    Article  CAS  Google Scholar 

  24. Liu X-W, Sun T-J, Hu J-L, Wang S-D (2016) Composites of metal-organic frameworks and carbon-based materials: preparations, functionalities and applications. J Mater Chem A 4:3584–3616. https://doi.org/10.1039/c5ta09924b

    Article  CAS  Google Scholar 

  25. Lu J, Hu Y, Wang P, Liu P, Chen Z, Sun D (2020) Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensor Actuators B-Chem 311:127909. https://doi.org/10.1016/j.snb.2020.127909

    Article  CAS  Google Scholar 

  26. Zhang J, Chen S, Ruo Y, Zhong X, Wu X (2015) An ultrasensitive electrochemiluminescent biosensor for the detection of concanavalin A based on poly(ethylenimine) reduced graphene oxide and hollow gold nanoparticles. Anal Bioanal Chem 407:447–453. https://doi.org/10.1007/s00216-014-8290-x

    Article  CAS  PubMed  Google Scholar 

  27. Rowe AA, Miller EA, Plaxco KW (2010) Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal Chem 82:7090–7095. https://doi.org/10.1021/ac101491d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu YL, Fu WL, Li CM, Huang CZ, Li YF (2015) Gold nanoparticles immobilized on metal–organic frameworks with enhanced catalytic performance for DNA detection. Anal Chim Acta 861:55–61. https://doi.org/10.1016/j.aca.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  29. Tan H, Chen Y (2012) Silver nanoparticle enhanced fluorescence of europium (III) for detection of tetracycline in milk. Sensors Actuators B-Chem 173:262–267. https://doi.org/10.1016/j.snb.2012.06.090

    Article  CAS  Google Scholar 

  30. Cui L, Hu J, C-c L, Wang C-m, C-y Z (2018) An electrochemical biosensor based on the enhanced quasi-reversible redox signal of Prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 122:168–174. https://doi.org/10.1016/j.bios.2018.09.061

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, He B, Huang J (2013) One-step synthesis of robust amine- and vinyl-capped magnetic iron oxide nanoparticles for polymer grafting, dye adsorption, and catalysis. ACS Appl Mater Inter 5:8678–8685. https://doi.org/10.1021/am402334f

    Article  CAS  Google Scholar 

  32. Li Z, Yin J, Gao C, Qiu G, Meng A, Li Q (2019) The construction of electrochemical aptasensor based on coral-like poly-aniline and Au nano-particles for the sensitive detection of prostate specific antigen. Sensors Actuators B-Chem 295:93–100. https://doi.org/10.1016/j.snb.2019.05.070

    Article  CAS  Google Scholar 

  33. Gao W, Xia X-H, Xu J-J, Chen H-Y (2007) Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity. J Phys Chem C 111:12213–12219. https://doi.org/10.1021/jp0722814

    Article  CAS  Google Scholar 

  34. Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei Q (2018) Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@ MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 102:189–195. https://doi.org/10.1016/j.bios.2017.11.032

    Article  CAS  PubMed  Google Scholar 

  35. Hajian R, Tayebi Z, Shams N (2017) Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharmaceut Anal 7:27–33. https://doi.org/10.1016/j.jpha.2016.07.005

    Article  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (31901783); Postdoctoral Science Foundation of China (2019M652835); National Key R&D Program of China (2017YFC1600403), Guangdong Provincial Key Laboratory (2020B121201009) and GDAS’ Project of Science and Technology Development (2019GDASYL0103006, 2020GDASYL-0301002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ding or Qingping Wu.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3.05 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, B., Wei, X. et al. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework. Microchim Acta 188, 286 (2021). https://doi.org/10.1007/s00604-021-04912-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04912-z

Keywords

Navigation