Skip to main content

Advertisement

Log in

A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A gold nanoparticle (AuNP)–based sensing strategy based on rapid reduction of Au(I→0) is proposed. As a proof-of-concept study, the proposed sensing principle is designed for simultaneous and colorimetric detection and discrimination of multiple proteins. In the presence of H2O2, the target proteins could reduce Au(I) (i.e. HAuCl2) to AuNPs with different sizes, shapes and dispersion/aggregation states, thus resulting in rapidly colorimetric identification of different proteins. The optical response (i.e. color) of AuNPs is found to be characteristic of a given protein. The color response patterns are characteristic for each protein and can be quantitatively differentiated by statistical techniques. The sensor array is capable of discriminating proteins at concentrations as low as 0.1 μg/mL with high accuracy. A linear relationship was observed between the total Euclidean distances and protein concentration, providing the potential for protein quantification using this sensor array. The limit of detection (LOD) for catalase (Cat) is 0.08 μg/mL. The good linear range (from 0 to 8 μg/mL) has been used for the quantitative assay of Cat. To show a potentially practical application, this method was used to detect and discriminate proteins in human urine and tear samples.

We report a facile gold nanoparticle (AuNP)-based sensing strategy, that is, "a rapid reduction of Au(I) to Au(0) nanoparticles with different sizes and shapes by analytes that having certain reducing capabilities, resulting in different colours." The proposed sensing principle is designed for simultaneous, colorimetric detection and discrimination of multiple proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wei X, Wang Y, Zhao Y, Chen Z (2017) Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Biosens Bioelectron 97:332–337

    Article  CAS  Google Scholar 

  2. Xi H, He W, Liu Q, Chen Z (2018) Protein discrimination using a colorimetric sensor array based on gold nanoparticle aggregation induced by cationic polymer. ACS Sustainable Chem Eng 6:10751–10757

    Article  CAS  Google Scholar 

  3. Špringer T, Hemmerová E, Finocchiaro G, Krištofiková Z, Vyhnálek M, Homola J (2020) Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sens Actuators B Chem 316:128146

    Article  Google Scholar 

  4. Zhang C, Li L, Liu Q, Chen Z (2020) Colorimetric differentiation of multiple oxidizing anions based on two core–shell Au@Ag nanoparticles with different morphologies as array recognition elements. Anal Chem 92:7123–7129

    Article  CAS  Google Scholar 

  5. Leng Y, Jiang K, Zhang W, Wang Y (2017) Synthesis of gold nanoparticles from Au(I) ions that shuttle to solidify: application on the sensor array design. Langmuir 33:6398–6403

    Article  CAS  Google Scholar 

  6. Koç ÖK, Üzer A, Apak R (2020) A colorimetric probe based on 4-mercaptophenol and thioglycolic acid-functionalized gold nanoparticles for determination of phytic acid and Fe(III) ions. Microchim Acta 187:586

    Article  Google Scholar 

  7. Abedalwafa MA, Tang Z, Qiao Y, Mei Q, Yang G, Li Y, Wang L (2020) An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA–gold nanoparticle bioconjugates. Microchim Acta 187:360

    Article  CAS  Google Scholar 

  8. Jia F, Liu Q, Wei W, Chen Z (2019) Colorimetric sensor assay for discrimination of proteins based on exonuclease I-triggered aggregation of DNA-functionalized gold nanoparticles. Analyst 144:4865–4870

    Article  CAS  Google Scholar 

  9. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA 107:10837

    Article  CAS  Google Scholar 

  10. Lee JI, Jang SC, Chung J, Choi WK, Hong C, Ahn GR, Kim SH, Lee BY, Chung WJ (2021) Colorimetric allergenic fungal spore detection using peptide-modified gold nanoparticles. Sens Actuators B Chem 327:128894

    Article  CAS  Google Scholar 

  11. Mao J, Lu Y, Chang N, Yang J, Zhang S, Liu Y (2016) Multidimensional colorimetric sensor array for discrimination of proteins. Biosens Bioelectron 86:56–61

    Article  CAS  Google Scholar 

  12. Mao J, Lu Y, Chang N, Yang J, Yang J, Zhang S, Liu Y (2016) A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination. Analyst 141:4014–4017

    Article  CAS  Google Scholar 

  13. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  14. Tollefson EJ, Allen CR, Chong G, Zhang X, Rozanov ND, Bautista A, Cerda JJ, Pedersen JA, Murphy CJ, Carlson EE, Hernandez R (2019) Preferential binding of cytochrome c to anionic ligand-coated gold nanoparticles: a complementary computational and experimental approach. ACS Nano 13:6856–6866

    Article  CAS  Google Scholar 

  15. Oliveira PFM, AAL M, Buzanich AG, Bienert R, Torresi RM, PHC C, Emmerling F (2020) Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chem Commun 56:10329–10332

    Article  Google Scholar 

  16. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770

    Article  CAS  Google Scholar 

  17. Weaver S, Taylor D, Gate W, Mills G (1996) Photoinitiated reversible formation of small gold crystallites in polymer gels. Langmuir 12:4618–4620

    Article  CAS  Google Scholar 

  18. Nasaruddin RR, Chen T, Yao Q, Zang S, Xie J (2021) Toward greener synthesis of gold nanomaterials: from biological to biomimetic synthesis. Coord Chem Rev 426:213540

    Article  CAS  Google Scholar 

  19. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis (ed: Hoag C), 6th edn. Prentice Hall, Upper Saddle River, pp 1–47. Ch. 1

  20. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York, pp 150–166. Ch. 7

  21. Haswell SJ (1992) Practical guide to chemometrics (ed: Gemperline P), 2nd edn. New York, pp 453–467. Ch. 4

  22. Kunkely H, Vogler A (1992) Photooxidation of AuCl2- and AuBr2- induced by ds excitation. Inorg Chem 31:4539–4541

    Article  CAS  Google Scholar 

  23. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  24. Schreiber A, Huber MC, Cölfen H, Schiller SM (2015) Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. Nat Commun 6:6705

    Article  CAS  Google Scholar 

  25. Yoshida H, Kuwauchi Y, Jinschek JR, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319

    Article  CAS  Google Scholar 

  26. Yuan Z, Du Y, Tseng Y, Peng M, Cai N, He Y, Chang H, Yeung ES (2015) Fluorescent gold nanodots based sensor array for proteins discrimination. Anal Chem 87:4253–4259

    Article  CAS  Google Scholar 

  27. King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T, Yeates TO, Baker D (2014) Accurate design of co-assembling multi-component protein nanomaterials. Nature 510:103–108

    Article  CAS  Google Scholar 

  28. Rangnekar A, Sarma TK, Singh AK, Deka J, Ramesh A, Chattopadhyay A (2007) Retention of enzymatic activity of α-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23:5700–5706

    Article  CAS  Google Scholar 

  29. Yang T, Li Z, Wang L, Guo C, Sun Y (2007) Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538

    Article  CAS  Google Scholar 

  30. Akhavan A, Kalhor HR, Kassaee MZ, Sheikh N, Hassanlou M (2010) Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem Eng J 159:230–235

    Article  CAS  Google Scholar 

  31. Bartram ME, Koel BE (1989) The molecular adsorption of NO2 and the formation of N2O3 on Au (111). Surf Sci 213:137–156

    Article  CAS  Google Scholar 

  32. Aroca R, Scraba M (1991) SERS and normal coordinate analysis of maleimide chemisorbed on colloidal silver. Spectrochim Acta A 47:263–269

    Article  Google Scholar 

  33. Schmidbaur H, Dash KC (1973) Organogold chemistry. XIII. 1,8-Naphthyridine complexes of dimethylgold halides and pseudohalides. Simple case of fluxional behavior. J Am Chem Soc 95:4855–4860

    Article  CAS  Google Scholar 

  34. Xu S, Lu X, Yao C, Huang F, Jiang H, Hua W, Na N, Liu H, Ouyang J (2014) A visual sensor array for pattern recognition analysis of proteins using novel blue-Emitting fluorescent gold nanoclusters. Anal Chem 86:11634–11639

    Article  CAS  Google Scholar 

  35. Xu S, Li W, Zhao X, Wu T, Cui Y, Fan X, Wang W, Luo X (2019) Ultrahighly efficient and stable fluorescent gold nanoclusters coated with screened peptides of unique sequences for effective protein and serum discrimination. Anal Chem 91:13947–13952

    Article  CAS  Google Scholar 

  36. Perez RL, Cong M, Vaughan SR, Ayala CE, Galpothdeniya WIS, Mathaga JK, Warner IM (2020) Protein discrimination using a fluorescence-based sensor array of thiacarbocyanine-GUMBOS. ACS Sens 5:2422–2429

    Article  CAS  Google Scholar 

  37. Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, Roda A, Campos EC (2010) Tear proteomics in evaporative dry eye disease. Eye 24:1396–1402

    Article  CAS  Google Scholar 

  38. Mcgill JI, Liakos GM, Goulding N, Seal DV (1984) Normal tear protein profiles and age-related changes. Brit J Ophthalmol 68:316–320

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(C20150029) and the Science Fund of Educational Department of Henan Province of China (21A140020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojing Xing, Lunguang Yao or Zhengbo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 2371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Y., Cheng, J., Liu, C. et al. A rapid reduction of Au(I→0) strategy for the colorimetric detection and discrimination of proteins. Microchim Acta 188, 249 (2021). https://doi.org/10.1007/s00604-021-04906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04906-x

Keywords

Navigation