Skip to main content
Log in

Peroxidase-mimetic activity of FeOCl nanosheets for the colorimetric determination of glutathione and cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For the first time the enzyme mimic activity of iron oxychloride (FeOCl) nanosheets has been studied. The intrinsic peroxidase-mimetic activity of the nanosheets in the presence of H2O2 was approved by the efficient oxidation of tetramethylbenzidine (TMB). The Michaelis–Menten constant of the nanosheets toward TMB was about six times lower than that of natural horseradish peroxidase. The superiority of the nanosheets’ catalytic property ascribes to their H2O2 activation ability. Based on the inhibition of the nanozymes’ catalytic reaction, an assay was developed for the quantitative measurement of glutathione (GSH) and cysteine (Cys). The linear range for both biomolecules was over the range of 3–33 μM. The LOD values (3σ/slope) for GSH and Cys were 2.23 μM and 2.76 μM, respectively. Importantly, we succeeded in colorimetric discrimination of GSH and Cys kinetically. We achieved high selectivity toward GSH and Cys. This work extends the feasibility of using FeOCl as nanozymes to construct biosensors, colorimetric probes for medical diagnosis, and nanozyme-based cancer therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kanamaru F, Shimada M, Koizumi M, Takano M, Takada T (1973) Mössbauer effect of FeOCl-pyridine complex. J Solid State Chem 7:297–299. https://doi.org/10.1016/0022-4596(73)90137-0

    Article  CAS  Google Scholar 

  2. Yang XJ, Xu XM, Xu J, Han YF (2013) Iron oxychloride (FeOCl): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J Am Chem Soc 135:16058–16061. https://doi.org/10.1021/ja409130c

    Article  CAS  PubMed  Google Scholar 

  3. Tan C, Xu Q, Sheng T, Cui X, Wu Z, Gao H, Li H (2020) Reactive oxygen species generation in FeOCl nanosheets activated peroxymonosulfate system: radicals and non-radical pathways. J Hazard Mater 398:123084. https://doi.org/10.1016/j.jhazmat.2020.123084

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Zhang J, Liu F, Shen C, Li F, Huang M, Yang B, Wang Z, Sand W (2020) Ultra-rapid detoxification of Sb(III) using a flow-through electro-fenton system. Chemosphere 245:125604. https://doi.org/10.1016/j.chemosphere.2019.125604

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z, Zhang F, Lv D, Jiang G, Zhang H, Gao G, Ning A, Lam SS, Song A (2020) Iron oxychloride-based heterogeneous Fenton pretreatment of corn stover for enhanced sugars production. Chem Eng J 416:127703. https://doi.org/10.1016/j.cej.2020.127703

    Article  CAS  Google Scholar 

  6. Liu F, Yao H, Sun S, Tao W, Wei T, Sun P (2020) Photo-Fenton activation mechanism and antifouling performance of an FeOCl-coated ceramic membrane. Chem Eng J 402:125477. https://doi.org/10.1016/j.cej.2020.125477

    Article  CAS  Google Scholar 

  7. Zhang J, Zhang G, Ji Q, Lan H, Qu J, Liu H (2020) Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Appl Catal B Environ 266:118665. https://doi.org/10.1016/j.apcatb.2020.118665

    Article  CAS  Google Scholar 

  8. Yu T, Li Q, Zhao X, Xia H, Ma L, Wang J, Meng YS, Shen X (2017) Nanoconfined iron oxychloride material as a high-performance cathode for rechargeable chloride ion batteries. ACS Energy Lett 2:2341–2348. https://doi.org/10.1021/acsenergylett.7b00699

    Article  CAS  Google Scholar 

  9. Zhang M, Sheng B, Ashley J, Zheng T, Wang W, Zhang Q, Zhang J, Zhou N, Shen J, Sun Y (2020) Manganese ion chelated FeOCl@PB@PDA@BPQDs nanocomposites as a tumor microenvironment-mediated nanoplatform for enhanced tumor imaging and therapy. Sensors Actuators B Chem 307:127491. https://doi.org/10.1016/j.snb.2019.127491

    Article  CAS  Google Scholar 

  10. Wang Y, Zhang H, Zhu Y, Dai Z, Bao H, Wei Y, Cai W (2016) Au-NP-decorated crystalline FeOCl nanosheet: facile synthesis by laser ablation in liquid and its exclusive gas sensing response to HCl at room temperature. Adv Mater Interfaces 3:1500801. https://doi.org/10.1002/admi.201500801

    Article  CAS  Google Scholar 

  11. ElMetwally AE, Eshaq G, Yehia FZ, Al-Sabagh AM, Kegnæs S (2018) Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol. ACS Catal 8:10668–10675. https://doi.org/10.1021/acscatal.8b03590

    Article  CAS  Google Scholar 

  12. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  13. Mohammadpour Z, Safavi A, Shamsipur M (2014) A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J 255:1–7. https://doi.org/10.1016/j.cej.2014.06.012

    Article  CAS  Google Scholar 

  14. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  PubMed  Google Scholar 

  15. Wang P, Wang T, Hong J, Yan X, Liang M (2020) Nanozymes: a new disease imaging strategy. Front Bioeng Biotechnol 8:15. https://doi.org/10.3389/fbioe.2020.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Gunasekaran S (2020) Nanozymes-based biosensors for food quality and safety. TrAC - Trends Anal Chem 126:115841. https://doi.org/10.1016/j.trac.2020.115841

    Article  CAS  Google Scholar 

  17. Niu X, Cheng N, Ruan X, Du D, Lin Y (2020) Review—nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc 167:037508. https://doi.org/10.1149/2.0082003jes

    Article  CAS  Google Scholar 

  18. Lu C, Liu X, Li Y, Yu F, Tang L, Hu Y, Ying Y (2015) Multifunctional Janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl Mater Interfaces 7:15395–15402. https://doi.org/10.1021/acsami.5b03423

    Article  CAS  PubMed  Google Scholar 

  19. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969–3976. https://doi.org/10.1039/c2nr12109c

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Liu C, Tong L, Li J, Luo R, Qi J, Li Y, Wang L (2015) Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: an effective heterogeneous Fenton catalyst for orange II degradation. RSC Adv 5:69593–69605. https://doi.org/10.1039/C5RA10826H

    Article  CAS  Google Scholar 

  21. Sun M, Chu C, Geng F, Lu X, Qu J, Crittenden J, Elimelech M, Kim JH (2018) Reinventing Fenton chemistry: iron oxychloride nanosheet for pH-insensitive H2O2 activation. Environ Sci Technol Lett 5:186–191. https://doi.org/10.1021/acs.estlett.8b00065

    Article  CAS  Google Scholar 

  22. Yao WT, Zhu HZ, Li WG, Bin YH, Wu YC, Yu SH (2013) Intrinsic peroxidase catalytic activity of Fe7S8 nanowires templated from [Fe16S20]/diethylenetriamine hybrid nanowires. Chempluschem 78:723–727. https://doi.org/10.1002/cplu.201300075

    Article  CAS  PubMed  Google Scholar 

  23. Jarrige I, Cai YQ, Shieh SR, Ishii H, Hiraoka N, Karna S, Li WH (2010) Charge transfer in FeOCl intercalation compounds and its pressure dependence: an x-ray spectroscopic study. Phys Rev B - Condens Matter Mater Phys 82:165121. https://doi.org/10.1103/PhysRevB.82.165121

    Article  CAS  Google Scholar 

  24. Küster A, Tea I, Sweeten S, Rozé JC, Robins RJ, Darmaun D (2008) Simultaneous determination of glutathione and cysteine concentrations and 2H enrichments in microvolumes of neonatal blood using gas chromatography-mass spectrometry. Anal Bioanal Chem 390:1403–1412. https://doi.org/10.1007/s00216-007-1799-5

    Article  CAS  PubMed  Google Scholar 

  25. Hodáková J, Preisler J, Foret F, Kubáň P (2015) Sensitive determination of glutathione in biological samples by capillary electrophoresis with green (515nm) laser-induced fluorescence detection. J Chromatogr A 1391:102–108. https://doi.org/10.1016/j.chroma.2015.02.062

    Article  CAS  PubMed  Google Scholar 

  26. Forgacsova A, Galba J, Mojzisova J, Mikus P, Piestansky J, Kovac A (2019) Ultra-high performance hydrophilic interaction liquid chromatography – triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J Pharm Biomed Anal 164:442–451. https://doi.org/10.1016/j.jpba.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Li P, Geng Q, Duan Y, Guo M, Cao Y (2014) Simultaneous determination of glutathione, cysteine, homocysteine, and cysteinylglycine in biological fluids by ion-pairing high-performance liquid chromatography coupled with precolumn derivatization. J Agric Food Chem 62:5845–5852. https://doi.org/10.1021/jf5014007

    Article  CAS  PubMed  Google Scholar 

  28. Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016) Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12:272–293. https://doi.org/10.1002/smll.201502207

    Article  CAS  PubMed  Google Scholar 

  29. Mohammadpour Z, Abdollahi SH, Safavi A (2018) Sugar-based natural deep eutectic mixtures as green intercalating solvents for high-yield preparation of stable MoS2 nanosheets: application to electrocatalysis of hydrogen evolution reaction. ACS Appl Energy Mater 1:5896–5906. https://doi.org/10.1021/acsaem.8b00838

    Article  CAS  Google Scholar 

  30. Mohammadpour Z, Abdollahi SH, Omidvar A, Mohajeri A, Safavi A (2020) Aqueous solutions of carbohydrates are new choices of green solvents for highly efficient exfoliation of two-dimensional nanomaterials. J Mol Liq 309:113087. https://doi.org/10.1016/j.molliq.2020.113087

    Article  CAS  Google Scholar 

  31. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:72–75. https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  32. Guan G, Zhang S, Liu S, Cai Y, Low M, Teng CP, Phang IY, Cheng Y, Duei KL, Srinivasan BM, Zheng Y, Zhang YW, Han MY (2015) Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J Am Chem Soc 137:6152–6155. https://doi.org/10.1021/jacs.5b02780

    Article  CAS  PubMed  Google Scholar 

  33. Bump EA, Brown JM (1990) Role of glutathione in the radiation response of mammalian cells invitro and in vivo. Pharmacol Ther 47:117–136. https://doi.org/10.1016/0163-7258(90)90048-7

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Chi M, Yang Z, Gao M, Wang C, Lu X (2017) Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid. Inorg Chem Front 4:1621–1627. https://doi.org/10.1039/c7qi00308k

    Article  CAS  Google Scholar 

  35. An Q, Sun C, Li D, Xu K, Guo J, Wang C (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5:13248–13257. https://doi.org/10.1021/am4042367

    Article  CAS  PubMed  Google Scholar 

  36. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541. https://doi.org/10.2307/3579271

    Article  CAS  PubMed  Google Scholar 

  37. Shamsipur M, Safavi A, Mohammadpour Z (2014) Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sensors Actuators B Chem 199:463–469. https://doi.org/10.1016/j.snb.2014.04.006

    Article  CAS  Google Scholar 

  38. Elias RJ, McClements DJ, Decker EA (2005) Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin in oil-in-water emulsions. J Agric Food Chem 53:10248–10253. https://doi.org/10.1021/jf0521698

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, Xia F, Nan Z (2020) Fabrication of FeS2/SiO2 double mesoporous hollow spheres as an artificial peroxidase and rapid determination of H2O2 and glutathione. ACS Appl Mater Interfaces 12:46539–46548. https://doi.org/10.1021/acsami.0c12593

    Article  CAS  PubMed  Google Scholar 

  40. Pang HH, Ke YC, Li NS, Chen YT, Huang CY, Wei KC, Yang HW (2020) A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens Bioelectron 165:112325. https://doi.org/10.1016/j.bios.2020.112325

    Article  CAS  PubMed  Google Scholar 

  41. Hormozi Jangi SR, Akhond M, Absalan G (2020) A novel selective and sensitive multinanozyme colorimetric method for glutathione detection by using an indamine polymer. Anal Chim Acta 1127:1–8. https://doi.org/10.1016/j.aca.2020.06.012

    Article  CAS  PubMed  Google Scholar 

  42. Ojha RP, Mishra R, Singh P, Nirala NR, Prakash R (2020) A composite prepared from MoS2 quantum dots and silver nanoparticles and stimulated by mercury(II) is a robust oxidase mimetic for use in visual determination of cysteine. Microchim Acta 187:10–12. https://doi.org/10.1007/s00604-019-4041-1

    Article  CAS  Google Scholar 

  43. McMenamin ME, Himmelfarb J, Nolin TD (2009) Simultaneous analysis of multiple aminothiols in human plasma by high performance liquid chromatography with fluorescence detection. J Chromatogr B 877:3274–3281. https://doi.org/10.1016/j.jchromb.2009.05.046

    Article  CAS  Google Scholar 

  44. Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C (2020) High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 151:111983. https://doi.org/10.1016/j.bios.2019.111983

    Article  CAS  PubMed  Google Scholar 

  45. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciate Motamed Cancer Institute for the financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Mohammadpour: project administration, conceptualization, methodology, writing, investigation, and visualization. Fatemeh Malekian Jebeli: investigation. Sahel Ghasemzadeh: investigation.

Corresponding author

Correspondence to Zahra Mohammadpour.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

(DOCX 1328 kb)

Materials and instrumentation; procedure for evaluation of the peroxidase-like activity and nanozyme kinetics; XRD, EDS, FTIR and BET data; enzyme kinetic study; optimization experiments; results of surface analysis; comparison table; serum composition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, Z., Malekian Jebeli, F. & Ghasemzadeh, S. Peroxidase-mimetic activity of FeOCl nanosheets for the colorimetric determination of glutathione and cysteine. Microchim Acta 188, 239 (2021). https://doi.org/10.1007/s00604-021-04903-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04903-0

Keywords

Navigation