Skip to main content

Advertisement

Log in

Platinum nanoparticles-embedded raspberry-liked SiO2 for the simultaneous electrochemical determination of eugenol and methyleugenol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on platinum nanoparticle–embedded raspberry-liked SiO2, a sensitive and selective electrochemical sensor was developed for simultaneous determination of eugenol (EU) and methyleugenol (MEU). Raspberry-liked SiO2 (RL-SiO2) was characterized with open pores on the surface, which can be used as a path for utilizing the inner space fully. So, platinum nanoparticles (Pt NPs) could be embedded in the inner and outer surface of RL-SiO2. As a carrier, RL-SiO2 not only avoided the agglomeration of the Pt NPs but also improved the catalytic performance. Therefore, the prepared Pt NPs@RL-SiO2/GCE exhibited excellent electrocatalytic activity for simultaneous determination of EU and MEU; the linearity ranges were 0.50 ~ 60 μmol/L for EU at a working potential of 0.65 V (vs. saturated calomel electrode) and 0.50 ~ 50 μmol/L for MEU at a working potential of 1.10 V; the detection limits were 0.12 μmol/L and 0.16 μmol/L (S/N=3); and the relative standard deviations (RSDs) were 3.2% and 4.5%, respectively. In addition, Pt NPs@RL-SiO2/GCE was successfully applied to the analysis of fish samples; the obtained recoveries were between 92.0 and 107%. Notably, the results conducted on samples were highly consistent with those obtained from high-performance liquid chromatography. It can be concluded that the study provided a simple method for simultaneous electrochemical determination of EU and MEU in fish samples.

Graphical abstract

Schematic illustration of the preparation of RL-SiO2@Pt NPs/GCE for simultaneous determination of eugenol and methyleugenol in fish samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Romaneli RDS, Boaratti AZ, Rodrigues AT, Queiroz DMDA, Khan KU, Nascimento TMT, Fernandes JBK, Mansano CFM (2018) Efficacy of benzocaine, eugenol, and menthol as anesthetics for freshwater angelfish. J Aquat Anim Health 30:210–216. https://doi.org/10.1002/aah.10030

    Article  CAS  PubMed  Google Scholar 

  2. Cupp AR, Hartleb CF, Fredricks KT, Gaikowski MP (2016) Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities. Aquac Res 47:234–242. https://doi.org/10.1111/are.12485

    Article  CAS  Google Scholar 

  3. Scherpenisse P, Bergwerff AA (2007) Determination of residues of tricaine in fish using liquid chromatography tandem mass spectrometry. Anal Chim Acta 586:407–410. https://doi.org/10.1016/j.aca.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  4. U.S.Department of Health and Human Services Food and Drug Administration Center for Veterinary Medicine. Guidance for industry concerns related to the use of Clove oil as an anesthetic for fish [EB/OL] (200704-24)[2018-08-15]. http://www.Fda.gov/downloads/AnimalVeterinary/Guidance Compliance Enforcement/Guidance for Industry/ucm0525520.pdf.

  5. International Agency for Research on Cancer (IARC)-Summaries&Evaluationsvolume36: eugenol [EB/OL]. http://www.inchem.org/documents/iarc/vol36/eugenol.html.

  6. AFS policy statement regarding the need for an immediate-release Anesthetic/Sed-ative for use in the Fisheries Disciplines [EB/OL]. http://www.fishculture/Section.org.

  7. Chen H, Huang H, Gao P, Huang GF, Liu WX, Li ZQ (2014) Determination of clove phenol drug residues in aquatic products by high performance liquid chromatography. Food and Fermentation Industries 40:156–160. https://doi.org/10.13995/j.cnki.11-1802/ts.201412030

    Article  CAS  Google Scholar 

  8. Yun SM, Lee MH, Lee KJ, Ku HO, Son SW, Joo YS (2010) Quantitative analysis of eugenol in clove extract by a validated HPLC method. J AOAC Int 93:1806–1810. https://doi.org/10.1093/jaoac/93.6.1806

    Article  CAS  PubMed  Google Scholar 

  9. Cantalapiedra A, Jesus Gismera M, Teresa Sevilla M, Procopio JR (2014) Sensitive and selective determination of phenolic compounds from aromatic plants using an electrochemical detection coupled with HPLC method. Phytochem Anal 25:247–254. https://doi.org/10.1002/pca.2500

    Article  CAS  PubMed  Google Scholar 

  10. Trujillo-Rodriguez MJ, Yu H, Cole WTS, Ho TD, Pino V, Anderson JL, Afonso AM (2014) Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta 121:153–162. https://doi.org/10.1016/j.talanta.2013.12.046

    Article  CAS  PubMed  Google Scholar 

  11. Beaudry F, Guenette SA, Vachon P (2006) Determination of eugenol in rat plasma by liquid chromatography-quadrupole ion trap mass spectrometry using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity. Biomed Chromatogr 20:1216–1222. https://doi.org/10.1002/bmc.687

    Article  CAS  PubMed  Google Scholar 

  12. Schulz K, Schlenz K, Malt S, Metasch R, Roemhild W, Dressler J, Lachenmeier DW (2008) Headspace solid-phase microextraction-gas chromatography-mass spectrometry for the quantitative determination of the characteristic flavouring agent eugenol in serum samples after enzymatic cleavage to validate post-offence alcohol drinking claims. J Chromatogr A 1211:113–119. https://doi.org/10.1016/j.chroma.2008.09.068

    Article  CAS  PubMed  Google Scholar 

  13. Sgorbini B, Ruosi MR, Cordero C, Liberto E, Rubiolo P, Bicchi C (2010) Quantitative determination of some volatile suspected allergens in cosmetic creams spread on skin by direct contact sorptive tape extraction-gas chromatography-mass spectrometry. J Chromatogr A 1217:2599–2605. https://doi.org/10.1016/j.chroma.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  14. Claudia Lopez J, Alicia Zon M, Fernandez H, Marcelo Granero A (2020) Development of an enzymatic biosensor to determine eugenol in dental samples. Talanta 210:1–8. https://doi.org/10.1016/j.talanta.2019.120647

    Article  CAS  Google Scholar 

  15. Tonello N, Beatriz Moressi M, Noel Robledo S, D'Eramo F, Miguel Marioli J (2016) Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey. Talanta 158:306–314. https://doi.org/10.1016/j.talanta.2016.05.071

    Article  CAS  PubMed  Google Scholar 

  16. Yildiz G, Aydogmus Z, Cinar ME, Senkal F, Ozturk T (2017) Electrochemical oxidation mechanism of eugenol on graphene modified carbon paste electrode and its analytical application to pharmaceutical analysis. Talanta 173:1–8. https://doi.org/10.1016/j.talanta.2017.05.056

    Article  CAS  PubMed  Google Scholar 

  17. Saglam O, Dilgin DG, Ertek B, Dilgin Y (2016) Differential pulse voltammetric determination of eugenol at a pencil graphite electrode. Materials Science & Engineering C-Materials for Biological Applications 60:156–162. https://doi.org/10.1016/j.msec.2015.11.031

    Article  CAS  Google Scholar 

  18. Garg A, Gupta B, Prakash R, Singh S (2010) Preparation and characterization of hydroxypropyl-beta-cyclodextrin inclusion complex of eugenol: differential pulse voltammetry and H-1-NMR. Chem Pharm Bull 58:1313–1319. https://doi.org/10.1248/cpb.58.1313

    Article  CAS  Google Scholar 

  19. Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensors and Actuators B-Chemical 206:570–576. https://doi.org/10.1016/j.snb.2014.09.119

    Article  CAS  Google Scholar 

  20. Wang B, Jing R, Qi H, Gao Q, Zhang C (2016) Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode. J Electroanal Chem 781:212–217. https://doi.org/10.1016/j.jelechem.2016.08.005

    Article  CAS  Google Scholar 

  21. Vatanparast J, Khalili S, Naseh M (2017) Dual effects of eugenol on the neuronal excitability: An in vitro study. Neurotoxicology 58:84–91. https://doi.org/10.1016/j.neuro.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  22. Hwang SM, Lee K, Im ST, Go EJ, Kim YH, Park CK (2020) Co-application of eugenol and QX-314 elicits the prolonged blockade of voltage-gated sodium channels in nociceptive trigeminal ganglion neurons. Biomolecules 10:1513. https://doi.org/10.3390/biom10111513

    Article  CAS  PubMed Central  Google Scholar 

  23. Krishnan S, Tong L, Liu S (2020) A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 187:82. https://doi.org/10.1007/s00604-019-4045-x

    Article  CAS  Google Scholar 

  24. Chen XM, Shi ZX, Hu YF, Xiao XH, Li GK (2018) A novel electrochemical sensor based on Fe3O4-doped nanoporous carbon for simultaneous determination of diethylstilbestrol and 17β-estradiol in toner. https://doi.org/10.1016/j.talanta.2018.05.063

  25. Ma L, Wang C, Gong M, Liao L, Long,R, Wang J, Wu D, Zhong W, Kim MJ, Chen Y, Xie Y, Xiong Y (2012) Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 6: 9797-9806. https://doi.org/10.1021/nn304237u.

  26. Hu X, Zhang R (2016) Voltammetric determination of the endocrine disruptor diethylstilbestrol by using a glassy carbon electrode modified with a composite consisting of platinum nanoparticles and multiwalled carbon nanotubes. Microchim Acta 183:3069–3076. https://doi.org/10.1007/s00604-016-1960-y

    Article  CAS  Google Scholar 

  27. Zhang J, Qu X, Han Y, Shen L, Yin S, Li G, Jiang Y, Sun S (2020) Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Applied Catalysis B-Environmental 263:118345. https://doi.org/10.1016/j.apcatb.2019.118345

    Article  CAS  Google Scholar 

  28. Kong FY, Li RF, Yao L (2019) An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186:321. https://doi.org/10.1007/s00604-019-3456-z

    Article  CAS  Google Scholar 

  29. Zhang C, Fan Y, Zhang H, Chen S, Yuan R (2019) An ultrasensitive signal-on electrochemiluminescence biosensor based on Au nanoclusters for detecting acetylthiocholine. Anal Bioanal Chem 411:905–913. https://doi.org/10.1007/s00216-018-1513-9

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199. https://doi.org/10.1016/j.carbon.2013.03.009

    Article  CAS  Google Scholar 

  31. Tang X, Liu ZH, Zhang C, Yang Z, Wang Z (2009) Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J Power Sources 193:939–943. https://doi.org/10.1016/j.jpowsour.2009.04.037

    Article  CAS  Google Scholar 

  32. Liang J, Hu H, Park H, Xiao C, Ding S, Paik U, Lou XW (2015) Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ Sci 8:1707–1711. https://doi.org/10.1039/C5EE01125F

    Article  CAS  Google Scholar 

  33. Zhou C, Han J, Song G, Guo R (2008) Fabrication of poly (aniline-co-pyrrole) hollow nanospheres with Triton X-100 micelles as templates. Journal of Polymer Science Part a-Polymer Chemistry 46:3563–3572. https://doi.org/10.1002/pola.22695

    Article  CAS  Google Scholar 

  34. Cheng Y, Niu X, Zhao T, Yuan F, Zhu Y, Fu H (2013) Hydrothermal synthesis of Cu@C composite spheres by a one-step method and their use as sacrificial templates to synthesize a CuO@SiO2 core-shell structure. Eur J Inorg Chem 2013:4988–4997. https://doi.org/10.1002/ejic.201300624

    Article  CAS  Google Scholar 

  35. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 103:3818–3827. https://doi.org/10.1021/jp983478m

    Article  CAS  Google Scholar 

  36. Liu Y, Li Z, Xu S, Xie Y, Ye Y, Zou X, Lin S (2019) Synthesis of Pt-Ni (trace)/GNs composite and its bi-functional electrocatalytic properties for MOR and ORR. J Colloid Interface Sci 554:640–649. https://doi.org/10.1016/j.jcis.2019.07.052

    Article  CAS  PubMed  Google Scholar 

  37. Najafi-Ashtiani H (2018) Performance evaluation of free-silicon organic-inorganic hybrid (SiO2-TiO2-PVP) thin films as a gate dielectric. Appl Surf Sci 455:373–378. https://doi.org/10.1016/j.apsusc.2018.06.010

    Article  CAS  Google Scholar 

  38. Dong W, Sun Y, Lee CW, Hua W, Lu X, Shi Y, Zhang S, Chen J, Zhao D (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129:13894–13904. https://doi.org/10.1021/ja073804o

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Xu Z, Jing F, Luo S, Chu W (2017) Facile one-pot synthesized ordered mesoporous Mg-SBA-15 supported PtSn catalysts for propane dehydrogenation. Applied Catalysis a-General 533:17–27. https://doi.org/10.1016/j.apcata.2016.12.026

    Article  CAS  Google Scholar 

  40. Wu P, Cao Y, Wang Y, Xing W, Zhong Z, Bai P, Yan Z (2018) Ultrastable bimetallic catalyst with tuned surface electronic properties for highly selective oxidation of cyclohexane. Appl Surf Sci 457:580–590. https://doi.org/10.1016/j.apsusc.2018.06.300

    Article  CAS  Google Scholar 

  41. Anson FC (1969) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-Ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 75:313–315. https://doi.org/10.1021/ac60210a068

    Article  Google Scholar 

  42. Ji L, Wang Y, Wu K, Zhang W (2016) Simultaneous determination of environmental estrogens: Diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 159:215–221. https://doi.org/10.1016/j.talanta.2016.06.030

    Article  CAS  PubMed  Google Scholar 

  43. Gan T, Shi ZX, Liu N, Lv Z, Sun JY, Wang HB (2015) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of 6-benzylaminopurine in sprout vegetables by hollow core/Shell-structured CuO@SiO2 microspheres. Food Anal Methods 8:2504–2514. https://doi.org/10.1007/s12161-015-0140-8

    Article  Google Scholar 

  44. Gan T, Shi ZX, Hu DY, Lv Z, Sun JY, Liu YM (2016) Preparation of yolk–shell structured copper oxide@silica oxide spheres and their application in high performance electrochemical sensing of Formoterol fumarate residues in swine feed and tissues. Food Chem 190:544–551. https://doi.org/10.1016/j.foodchem.2015.05.132

    Article  CAS  PubMed  Google Scholar 

  45. Gan T, Wang Z, Gap J, Sun J, Wu K, Wang H, Liu Y (2019) Morphology-dependent electrochemical activity of Cu2O polyhedrons and construction of sensor for simultaneous determination of phenolic compounds with graphene oxide as reinforcement. Sensors and Actuators B-Chemical 282:549–558. https://doi.org/10.1016/j.snb.2018.11.102

    Article  CAS  Google Scholar 

  46. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem 52:355–393. https://doi.org/10.1016/S0022-0728(74)80448-1

    Article  CAS  Google Scholar 

  47. Ahmad H, Zhao LH, Liu CK, Cai CJ, Ma FQ (2021) Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-OES determination. Food Chem 338:128028. https://doi.org/10.1016/j.foodchem.2020.128393

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Guo ZW, Zhang JJ, Li YY, Duan R (2021) A new method for determining the denaturation temperature of collagen. Food Chem 343:128393. https://doi.org/10.1016/j.foodchem.2020.128393

    Article  CAS  PubMed  Google Scholar 

  49. Ziyatdinova G, Ziganshina E, Romashkina S, Budnikov H (2017) Highly sensitive amperometric sensor for eugenol quantification based on CeO2 nanoparticles and surfactants. Electroanalysis 29:1197–1204. https://doi.org/10.1002/elan.201600719

    Article  CAS  Google Scholar 

  50. Ziyatdinova G, Ziganshina E, Budnikov H (2013) Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media. Anal Methods 5:4750–4756. https://doi.org/10.1039/C3AY40693H

    Article  CAS  Google Scholar 

  51. Naskar H, Ghatak B, Biswas S, Singh PP, Tudu B, Bandyopadhyay R (2020) Electrochemical detection of eugenol (EU) using polyacrylonitrile molecular imprinted polymer embedded graphite (PAN-MIP/G) electrode. IEEE Sensors J 20:39–46. https://doi.org/10.1109/JSEN.2019.2941637

    Article  CAS  Google Scholar 

  52. Wang S, Zhang T, Wang Z, Wang D, Wang Z, Sun M, Song X, Liu H (2019) Direct electrochemistry of eugenol at a glassy carbon electrode modified with electrochemically reduced graphene oxide. International Journal of Electrochemical Science 14: 3618-3627. https://doi.org/10.20964/2019.04.27.

  53. Feng Q, Duan K, Ye X, Lu D, Du Y, Wang C (2014) A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nanoflower fabricated electrochemical. Sensors Actuators B Chem 192:1–8. https://doi.org/10.1016/j.snb.2013.10.087

    Article  CAS  Google Scholar 

  54. Afzali D, Zarei S, Fathirad F, Mostafavi A (2014) Gold nanoparticles modified carbon paste electrode for differential pulse voltammetric determination of eugenol. Mater Sci Eng C 43:97–101. https://doi.org/10.1016/j.msec.2014.06.035

    Article  CAS  Google Scholar 

  55. Lin X, Ni Y, Kokot S (2014) Electrochemical mechanism of eugenol at a doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochim Acta 133:484–491. https://doi.org/10.1016/j.electacta.2014.04.065

    Article  CAS  Google Scholar 

  56. Yang L, Zhao F, Zeng B (2016) Electrochemical determination of eugenol using a threedimensional molecularly imprinted poly (p-aminothiophenol-co-p-aminobenzoic acids) film modified electrode. Electrochim Acta 210:293–300. https://doi.org/10.1016/j.electacta.2016.05.167

    Article  CAS  Google Scholar 

  57. He RP, Lei B, Su YP, Wang AL, Cui KP, Shi XK, Chen XM (2020) Effectiveness of eugenol as an anesthetic for adult spotted sea bass (Lateolabrax maculatus). Aquaculture 523:735180. https://doi.org/10.1016/j.aquaculture.2020.735180

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (No. 2019B020211001), the National Key Research and Development Program of China (No. 2019YFC1606101), and the National Natural Science Foundation of China (Nos. 21976213 and 21775167), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongke Li or Yufei Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 8142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Xia, L., Li, G. et al. Platinum nanoparticles-embedded raspberry-liked SiO2 for the simultaneous electrochemical determination of eugenol and methyleugenol. Microchim Acta 188, 241 (2021). https://doi.org/10.1007/s00604-021-04892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04892-0

Keywords

Navigation