Skip to main content
Log in

Bimetallic MOFs-derived coral-like Ag-Mo2C/C interwoven nanorods for amperometric detection of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Coral-like Ag-Mo2C/C-I and blocky Ag-Mo2C/C-II composites were obtained from one-step in situ calcination of [Ag(HL)3(Mo8O26)]n·nH2O [L: N-(pyridin-3-ylmethyl) pyridine-2-amine] under N2/H2 and N2 atmospheres, respectively. The coral-like morphology of Ag-Mo2C/C-I is composed of interwoven nanorods embedded with small particles, and the nano-aggregate of Ag-Mo2C/C-II is formed by cross-linkage of irregular nanoparticles. The above composites are decorated on glassy carbon electrode (GCE) drop by drop to generate two enzyme-free electrochemical sensors (Ag-Mo2C/C/GCE) for amperometric detection of H2O2. In particular, the coral-like Ag-Mo2C/C-I/GCE sensor possesses rapid response (1.2 s), high sensitivity (466.2 μA·mM−1·cm−2), and low detection limit (25 nM) towards trace H2O2 and has wide linear range (0.08 μM~4.67 mM) and good stability. All these sensing performances are superior to Ag-Mo2C/C-II/GCE, indicating that the calcining atmosphere has an important influence on microstructure and electrochemical properties. The excellent electrochemical H2O2 sensing performance of Ag-Mo2C/C-I/GCE sensor is mainly attributed to the synergism of unique microstructure, platinum-like electron structure of Mo2C, strong interaction between Mo and Ag, as well as the increased active sites and conductivity caused by co-doped Ag and carbon. Furthermore, this sensor has been successfully applied to the detection of H2O2 in human serum sample, contact lens solution, and commercial disinfector, demonstrating the potential in related fields of environment and biology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray JT, Kang SW, Yang JI, Kruse N, McEwen JS, Park JC, Ha S (2021) Unravelling the reaction mechanism of gas-phase formic acid decomposition on highly dispersed Mo2C nanoparticles supported on graphene flakes. J Colloid Interface Sci 583:614–625. https://doi.org/10.1016/j.jcis.2020.09.007

    Article  CAS  Google Scholar 

  2. Wu SF, Chen MY, Wang WW, Zhou JB, Tang XR, Zhou DL, Liu C (2021) Molybdenum carbide nanoparticles assembling in diverse heteroatoms doped carbon matrix as efficient hydrogen evolution electrocatalysts in acidic and alkaline medium. Carbon 171:385–394. https://doi.org/10.1016/j.carbon.2020.09.037

    Article  CAS  Google Scholar 

  3. Zhang L, Zhang J (2018) Multiporous molybdenum carbide nanosphere as a new charming electrode material for highly sensitive simultaneous detection of guanine and adenine. Biosens Bioelectron 110:218–224. https://doi.org/10.1016/j.bios.2018.03.064

    Article  CAS  PubMed  Google Scholar 

  4. Feng SX, Li YG, Zhang RY, Li YC (2019) A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination. Biosens Bioelectron 142:111491. https://doi.org/10.1016/j.bios.2019.111491

    Article  CAS  PubMed  Google Scholar 

  5. Yang S, Zhao JH, Tricard S, Yu LX, Fang J (2020) A sensitive and selective electrochemical sensor based on NP-doped molybdenum carbide@carbon/prussian blue/graphite felt composite electrode for the detection of dopamine. Anal Chim Acta 1094:80–89. https://doi.org/10.1016/j.aca.2019.09.077

    Article  CAS  PubMed  Google Scholar 

  6. Ren HL, Zhang Y, Liu LL, Li YG, Wang DY, Zhang RY, Zhang WJ, Li YC, Ye BC (2019) Synthesis of hollow Mo2C/carbon spheres, and their application to simultaneous electrochemical detection of hydroquinone, catechol, and resorcinol. Microchim Acta 186:306. https://doi.org/10.1007/s00604-019-3432-7

    Article  CAS  Google Scholar 

  7. Patella B, Buscetta M, Vincenzo SD, Ferraro M, Aiello G, Sunseri C, Pace E, Inguanta R, Cipollina C (2021) Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages. Sensors Actuators B Chem 327:128901. https://doi.org/10.1016/j.snb.2020.128901

    Article  CAS  Google Scholar 

  8. Mani V, Selvaraj S, Peng TK, Lin HY, Jeromiyas N, Ikeda H, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C, Huang ST (2019) ZnCo2O4 nanoflowers grown on Co3O4 nanowire-decorated Cu foams for in situ profiling of H2O2 in live cells and biological media. ACS Appl Nano Mater 2:5049–5060. https://doi.org/10.1021/acsanm.9b00969

    Article  CAS  Google Scholar 

  9. Hira SA, Nallal M, Rajendran K, Song S, Park S, Lee JM, Joo SH, Park KH (2020) Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor. Anal Chim Acta 1118:26–35. https://doi.org/10.1016/j.aca.2020.04.043

    Article  CAS  PubMed  Google Scholar 

  10. Yang LZ, Xu CL, Ye WC, Liu WS (2015) An electrochemical sensor for H2O2 based on a new Co-metal-organicframework modified electrode. Sensors Actuators B Chem 215:489–496. https://doi.org/10.1016/j.snb.2015.03.104

    Article  CAS  Google Scholar 

  11. Sun DP, Yang DC, Wei P, Liu B, Chen ZG, Zhang LY, Lu J (2020) One-step electrodeposition of silver nanostructures on 2D/3D metal-organic framework ZIF-67: comparison and application in electrochemical detection of hydrogen peroxide. ACS Appl Mater Interfaces 12:41960–41968. https://doi.org/10.1021/acsami.0c11269

    Article  CAS  PubMed  Google Scholar 

  12. Liu BB, Wang XY, Zhai YY, Zhang ZL, Liu HQ, Li L, Wei HR (2020) Facile preparation of well conductive 2D MOF for nonenzymatic detection of hydrogen peroxide: relationship between electrocatalysis and metal center. J Electroanal Chem 858:113804. https://doi.org/10.1016/j.jelechem.2019.113804

    Article  CAS  Google Scholar 

  13. Chen C, Xiong DK, Gu ML, Lu CX, Yi FY, Ma XH (2020) MOF-derived bimetallic CoFe-PBA composites as highly selective and sensitive electrochemical sensors for hydrogen peroxide and nonenzymatic glucose in human serum. ACS Appl Mater Interfaces 12:35365–35374. https://doi.org/10.1021/acsami.0c09689

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Tang C, Liang TT, Tang CY, Lv XH, Tang KL, Li CM (2020) Porous molybdenum carbide nanostructured catalyst toward highly sensitive biomimetic sensing of H2O2. Electroanalysis 32:1243–1250. https://doi.org/10.1002/elan.202000008

    Article  CAS  Google Scholar 

  15. Li B, Liu LH, Song HY, Deng ZP, Huo LH, Gao S (2020) Carbon-doping mesoporous β-Mo2C aggregates for nanomolar electrochemical detection of hydrogen peroxide. ACS Appl Nano Mater 3:7499–7507. https://doi.org/10.1021/acsanm.0c01106

    Article  CAS  Google Scholar 

  16. Wu CX, Li R, Wang YL, Lu S, Lin J, Liu YC, Zhang XT (2020) Strong metal-support interactions enable highly transparent Pt-Mo2C counter electrodes of bifacial dye-sensitized solar cells. Chem Commun 56:10046–10049. https://doi.org/10.1039/d0cc03744c

    Article  CAS  Google Scholar 

  17. Jiang H, Xing ZP, Zhao TY, Yang ZK, Wang K, Li ZZ, Yang SL, Xie LY, Zhou W (2020) Plasmon Ag nanoparticle/Bi2S3 ultrathin nanobelt/oxygen-doped flower-like MoS2 nanosphere ternary heterojunctions for promoting charge separation and enhancing solar-driven photothermal and photocatalytic performances. Appl Catal, B 27:118947. https://doi.org/10.1016/j.apcatb.2020.118947

    Article  CAS  Google Scholar 

  18. Li XM, Ma XL, Du X, Zheng JL, Hao XG, Abudula A, Guan GQ (2016) Silver-doped molybdenum carbide catalyst with high activity for electrochemical water splitting. Phys Chem Chem Phys 18:32780–32785. https://doi.org/10.1039/c6cp06307a

    Article  CAS  PubMed  Google Scholar 

  19. Zhang LN, Li SH, Tan HQ, Khan SU, Ma YY, Zang HY, Wang YH, Li YG (2017) MoP/Mo2C@C: a new combination of electrocatalysts for highly efficient hydrogen evolution over the entire pH range. ACS Appl Mater Interfaces 9:16270–16279. https://doi.org/10.1021/acsami.7b03823

    Article  CAS  PubMed  Google Scholar 

  20. Lou XH, Zhu CL, Pan H, Ma J, Zhu SM, Zhang D, Jiang XL (2016) Cost-effective three-dimensional graphene/Ag aerogel composite for high-performance sensing. Electrochim Acta 205:70–76. https://doi.org/10.1016/j.electacta.2016.04.102

    Article  CAS  Google Scholar 

  21. Yusoff N, Rameshkumar P, Mehmood MS, Pandikumar A, Lee HW, Huang NM (2017) Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens Bioelectron 87:1020–1028. https://doi.org/10.1016/j.bios.2016.09.045

    Article  CAS  PubMed  Google Scholar 

  22. Zhang ZY, Deng ZP, Huo LH, Zhao H, Gao S (2013) Well-designed strategy to construct helical silver(I) coordination polymers from flexible unsymmetrical bis(pyridyl) ligands: syntheses, structures, and properties. Inorg Chem 52:5914–5923. https://doi.org/10.1021/ic400055t

    Article  CAS  PubMed  Google Scholar 

  23. Sheng ZM, Gan ZZ, Huang H, Niu RL, Han ZW, Jia RP (2020) M-Nx (M = Fe, Co, Ni, Cu) doped graphitic nanocages with high specific surface area for non-enzymatic electrochemical detection of H2O2. Sensors Actuators B Chem 305:127550. https://doi.org/10.1016/j.snb.2019.127550

    Article  CAS  Google Scholar 

  24. Vu A, Qian YQ, Stein A (2012) Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv Energy Mater 2:1056–1085. https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  25. Asif M, Aziz A, Wang HT, Wang ZY, Wang W, Ajmal M, Xiao F, Chen XD, Liu HF (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:61–71. https://doi.org/10.1007/s00604-018-3158-y

    Article  CAS  Google Scholar 

  26. Song HY, Zhao H, Zhang XF, Xu YM, Cheng XL, Gao S, Huo LH (2019) A hollow urchin-like α-MnO2 as an electrochemical sensor for hydrogen peroxide and dopamine with high selectivity and sensitivity. Microchim Acta 186:210–221. https://doi.org/10.1007/s00604-019-3316-x

    Article  CAS  Google Scholar 

  27. Peng C, Zhou SY, Zhang XM, Zeng TQ, Zhang W, Li HM, Liu XY, Zhao P (2018) One pot synthesis of nitrogen-oped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum. Sensors Actuators B Chem 270:530–537. https://doi.org/10.1016/j.snb.2018.05.036

    Article  CAS  Google Scholar 

  28. Asif M, Wang HT, Dong S, Aziz A, Zhang GA, Xiao F, Liu HF (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sensors Actuators B Chem 239:243–252. https://doi.org/10.1016/j.snb.2016.08.010

    Article  CAS  Google Scholar 

  29. Li JH, Jiang JB, Xu ZF, Liu MQ, Tang SP, Yang CM, Qian D (2018) Facile synthesis of Ag@Cu2O heterogeneous nanocrystals decorated N-doped reduced graphene oxide with enhanced electrocatalytic activity for ultrasensitive detection of H2O2. Sensors Actuators B Chem 260:529–540. https://doi.org/10.1016/j.snb.2018.01.068

    Article  CAS  Google Scholar 

  30. Shu YJ, Zhang WB, Cai HH, Yang Y, Yu X, Gao QS (2019) Expanding the interlayers of molybdenum disulfide toward the highly sensitive sensing of hydrogen peroxide. Nanoscale 11:6644–6653. https://doi.org/10.1039/c9nr00333a

    Article  CAS  PubMed  Google Scholar 

  31. Jahanbakhshi M, Habibi B (2016) A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron 81:143–150. https://doi.org/10.1016/j.bios.2016.02.064

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Basic Research Business Fees of Colleges and Universities in Heilongjiang Province (Grant No. 2018-KYYWF-1292, 2019-KYYWF-0456, 2020-KYYWF-0863).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Peng Deng or Shan Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 35013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, XT., Liu, LH. et al. Bimetallic MOFs-derived coral-like Ag-Mo2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Microchim Acta 188, 234 (2021). https://doi.org/10.1007/s00604-021-04888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04888-w

Keywords

Navigation