Skip to main content
Log in

Zeolitic imidazolate framework-8 decorated with gold nanoparticles for solid-phase extraction of neonicotinoids in agricultural samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite built with aminated zeolitic imidazolate framework and gold nanoparticles (AuNPs) for solid-phase extraction (SPE) of neonicotinoids in agricultural samples is presented. The composite was prepared through the assembly of AuNPs onto the surface of metal-organic framework based on the strong interaction between the amino group and AuNP. These metallic surfaces provided additional interactions based on the affinity of amino and cyano groups present in the target compounds. The composite was characterized by scanning electron microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and surface area measurements. Regarding the SPE protocol, several parameters that can influence the extraction performance were optimized, such as sample volume or composition of elution solvent, among others. After elution, the analytes were determined via HPLC with diode-array detection. Under the selected conditions, satisfactory recoveries of five pesticides (thiamethoxan, clothianidin, imidacloprid, acetamiprid, and thiacloprid) were obtained (between 80 and 110%) in real samples, whereas the limits of detection ranged from 0.019 to 0.041 μg L−1 in aqueous samples and 0.3 to 0.8 μg g−1 in solid samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buszewski B, Bukowska M, Ligor M, Staneczko-Baranowska I (2019) A holistic study of neonicotinoids neuroactive insecticides—properties, applications, occurrence, and analysis. Environ Sci Pollut Res 26:34723–34740. https://doi.org/10.1007/s11356-019-06114-w

    Article  CAS  Google Scholar 

  2. Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed 52:9464–9485. https://doi.org/10.1002/anie.201302550

    Article  CAS  Google Scholar 

  3. Commission THEE (2013) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. EFSA J 11:12–26. https://doi.org/10.2903/j.efsa.2013.3067

    Article  CAS  Google Scholar 

  4. EU Decision 2018/840 (2018) Commission implementing decision (EU) 2018/840 of 5 June 2018. Off J Eur Union 141:9–12

    Google Scholar 

  5. Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422. https://doi.org/10.1016/j.scitotenv.2014.09.090

    Article  CAS  PubMed  Google Scholar 

  6. European Union (2006) Directive 2006/118/EC of the European Parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Union 19:19–31. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0118. Accessed 15 Dec 2020

  7. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science (80- ) 336:351–352. https://doi.org/10.1126/science.1215025

    Article  CAS  Google Scholar 

  8. Kamel A (2010) Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem 58:5926–5931. https://doi.org/10.1021/jf904120n

    Article  CAS  PubMed  Google Scholar 

  9. Dankyi E, Gordon C, Carboo D, Fomsgaard IS (2014) Quantification of neonicotinoid insecticide residues in soils from cocoa plantations using a QuEChERS extraction procedure and LC-MS/MS. Sci Total Environ 499:276–283. https://doi.org/10.1016/j.scitotenv.2014.08.051

    Article  CAS  PubMed  Google Scholar 

  10. Hao C, Noestheden MR, Zhao X, Morse D (2016) Liquid chromatography-tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection. Anal Chim Acta 925:43–50. https://doi.org/10.1016/j.aca.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  11. Mohan C, Kumar Y, Madan J, Saxena N (2010) Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography. Environ Monit Assess 165:573–576. https://doi.org/10.1007/s10661-009-0968-8

    Article  CAS  PubMed  Google Scholar 

  12. Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J (2016) Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid-liquid microextraction. Food Chem 202:389–395. https://doi.org/10.1016/j.foodchem.2016.01.143

    Article  CAS  PubMed  Google Scholar 

  13. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553:21–26. https://doi.org/10.1016/j.aca.2005.08.006

    Article  CAS  Google Scholar 

  14. Ettiene G, Bauza R, Plata MR, Contento AM, Ríos Á (2012) Determination of neonicotinoid insecticides in environmental samples by micellar electrokinetic chromatography using solid-phase treatments. Electrophoresis 33:2969–2977. https://doi.org/10.1002/elps.201200241

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Wei Y, Li H, Zeng EY, You J (2017) Application of Box–Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta 170:392–398. https://doi.org/10.1016/j.talanta.2017.04.031

    Article  CAS  PubMed  Google Scholar 

  16. Hao C, Morse D, Zhao X, Sui L (2015) Liquid chromatography/tandem mass spectrometry analysis of neonicotinoids in environmental water. Rapid Commun Mass Spectrom 29:2225–2232. https://doi.org/10.1002/rcm.7381

    Article  CAS  PubMed  Google Scholar 

  17. Nasalevich MA, Van Der Veen M, Kapteijn F, Gascon J (2014) Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16:4919–4926. https://doi.org/10.1039/c4ce00032c

    Article  CAS  Google Scholar 

  18. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  19. Gutiérrez-Serpa A, Pacheco-Fernández I, Pasán J, Pino V (2019) Metal–organic frameworks as key materials for solid-phase microextraction devices—a review. Separations 6. https://doi.org/10.3390/separations6040047

  20. Chen L, Xu Q (2019) Metal-organic framework composites for catalysis. Matter 1:57–89. https://doi.org/10.1016/j.matt.2019.05.018

    Article  Google Scholar 

  21. Ahmed I, Jhung SH (2014) Composites of metal-organic frameworks: preparation and application in adsorption. Mater Today 17:136–146. https://doi.org/10.1016/j.mattod.2014.03.002

    Article  CAS  Google Scholar 

  22. Cao X, Jiang Z, Wang S, Hong S, Li H, Shao Y, She Y, Wang J, Jin F, Jin M (2017) One-pot synthesis of magnetic zeolitic imidazolate framework/grapheme oxide composites for the extraction of neonicotinoid insecticides from environmental water samples. J Sep Sci 40:4747–4756. https://doi.org/10.1002/jssc.201700674

    Article  CAS  PubMed  Google Scholar 

  23. Ghiasi A, Malekpour A, Mahpishanian S (2020) Metal-organic framework MIL101 (Cr)-NH2 functionalized magnetic graphene oxide for ultrasonic-assisted magnetic solid phase extraction of neonicotinoid insecticides from fruit and water samples. Talanta 217:121120. https://doi.org/10.1016/j.talanta.2020.121120

    Article  CAS  PubMed  Google Scholar 

  24. Cao X, Liu G, She Y, Jiang Z, Jin F, Jin M, du P, Zhao F, Zhang Y, Wang J (2016) Preparation of magnetic metal organic framework composites for the extraction of neonicotinoid insecticides from environmental water samples. RSC Adv 6:113144–113151. https://doi.org/10.1039/c6ra23759b

    Article  CAS  Google Scholar 

  25. Liu YL, Fu WL, Li CM, Huang CZ, Li YF (2015) Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection. Anal Chim Acta 861:55–61. https://doi.org/10.1016/j.aca.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  26. Yuan J, Chen X, Duan H, Cai X, Li Y, Guo L, Huang X, Xiong Y (2020) Gold nanoparticle–decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Microchim Acta 187:640. https://doi.org/10.1007/s00604-020-04617-9

    Article  CAS  Google Scholar 

  27. Paul A, Vyas G, Paul P, Srivastava DN (2018) Gold-nanoparticle-encapsulated zif-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl Nano Mater 1:3600–3607. https://doi.org/10.1021/acsanm.8b00748

    Article  CAS  Google Scholar 

  28. Yang Y, Wang S, Wen H et al (2019) Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew Chem 131:15506–15510. https://doi.org/10.1002/ange.201909770

    Article  Google Scholar 

  29. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131:11302–11303. https://doi.org/10.1021/ja9047653

    Article  CAS  PubMed  Google Scholar 

  30. Aureau D, Varin Y, Roodenko K, Seitz O, Pluchery O, Chabal YJ (2010) Controlled deposition of gold nanoparticles on well-defined organic monolayer grafted on silicon surfaces. J Phys Chem C 114:14180–14186. https://doi.org/10.1021/jp104183m

    Article  CAS  Google Scholar 

  31. Gourishankar A, Shukla S, Ganesh KN, Sastry M (2004) Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J Phys Chem B 108:11535–11540. https://doi.org/10.1021/ja046785g

    Article  CAS  Google Scholar 

  32. Sánchez-Bayo F, Hyne RV (2014) Detection and analysis of neonicotinoids in river waters - development of a passive sampler for three commonly used insecticides. Chemosphere 99:143–151. https://doi.org/10.1016/j.chemosphere.2013.10.051

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Pérez-Cejuela H, Mompó-Roselló Ó, Crespí-Sánchez N, Palomino Cabello C, Catalá-Icardo M, Simó-Alfonso EF, Herrero-Martínez JM (2020) Determination of benzomercaptans in environmental complex samples by combining zeolitic imidazolate framework-8-based solid-phase extraction and high-performance liquid chromatography with UV detection. J Chromatogr A 1631:461580. https://doi.org/10.1016/j.chroma.2020.461580

    Article  CAS  PubMed  Google Scholar 

  34. Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM (2017) Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Microchim Acta 184:1683–1690. https://doi.org/10.1007/s00604-017-2168-5

    Article  CAS  Google Scholar 

  35. Soil Quality–Determination of pH (ISO 10390:2021). Soil quality — Determination of the specific electrical conductivity (ISO 11265:1994). Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method (ISO 11465:1993)

  36. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, Banjac V (2013) Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 111:125–133. https://doi.org/10.1016/j.talanta.2013.02.059

    Article  CAS  PubMed  Google Scholar 

  37. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M (2011) Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem Mater 23:2130–2141. https://doi.org/10.1021/cm103571y

    Article  CAS  Google Scholar 

  38. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880. https://doi.org/10.1039/c1nr11188d

    Article  CAS  PubMed  Google Scholar 

  39. Lin JH, Tseng WL (2012) Gold nanoparticles for specific extraction and enrichment of biomolecules and environmental pollutants. Rev Anal Chem 31:153–162. https://doi.org/10.1515/revac-2012-0029

    Article  CAS  Google Scholar 

  40. Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors Actuators B Chem 238:888–902. https://doi.org/10.1016/j.snb.2016.06.081

    Article  CAS  Google Scholar 

  41. Liu G, Li L, Xu D, Huang X, Xu X, Zheng S, Zhang Y, Lin H (2017) Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr Polym 175:584–591. https://doi.org/10.1016/j.carbpol.2017.06.074

    Article  CAS  PubMed  Google Scholar 

  42. Carbonell-Rozas L, Lara FJ, del Olmo IM, García-Campaña AM (2020) Micellar electrokinetic chromatography as efficient alternative for the multiresidue determination of seven neonicotinoids and 6-chloronicotinic acid in environmental samples. Anal Bioanal Chem 412:6231–6240. https://doi.org/10.1007/s00216-019-02233-y

    Article  CAS  PubMed  Google Scholar 

  43. McManus MM, Oates RP, Subbiah S et al (2019) Matrix-matched standards in the liquid chromatography–mass spectrometry determination of neonicotinoids in soil and sediment. J Chromatogr A 1602:246–252. https://doi.org/10.1016/j.chroma.2019.05.035

    Article  CAS  PubMed  Google Scholar 

  44. Suganthi A, Bhuvaneswari K, Ramya M (2018) Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS. Food Chem 241:275–280. https://doi.org/10.1016/j.foodchem.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  45. Chen M, Collins EM, Tao L, Lu C (2013) Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405:9251–9264. https://doi.org/10.1007/s00216-013-7338-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Héctor M-P-C thanks the support from the Spanish Ministry of Science, Innovation and Universities for FPU pre-doctoral fellowships. The authors extend their appreciation to MSIU for granting the Spanish Network of Excellence in Sample preparation (RED2018-102522-T). This research is performed in the framework of the Sample Preparation Task Force and Network, supported by the Division of Analytical Chemistry of the European Chemical Society.

Funding

The authors would like to gratefully acknowledge the financial support received from the project RTI2018-095536-B-I00 (Ministry of Science, Innovation and Universities (MSIU), Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Herrero-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Pérez-Cejuela, H., Pravcová, K., Česlová, L. et al. Zeolitic imidazolate framework-8 decorated with gold nanoparticles for solid-phase extraction of neonicotinoids in agricultural samples. Microchim Acta 188, 197 (2021). https://doi.org/10.1007/s00604-021-04872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04872-4

Keywords

Navigation