Skip to main content
Log in

Nanozyme based on graphene oxide modified with Fe3O4, CuO, and cucurbit[6]uril for colorimetric determination of homocysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanozyme based on graphene oxide modified with Fe3O4 NPs, CuO NPs, and cucurbit[6]uril has been successfully fabricated by a simple sonochemical technique. By employing CB[6] as a specific binding pocket and Fe3O4@CuO-GO as a peroxidase mimic, this novel nanozyme (BN I) is equipped with molecular recognition ability and enhanced peroxidase-like activity. On the basis of the inhibition effect of homocysteine (Hcy) towards the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) catalyzed by BN I, a simple colorimetric method is established for the sensitive and selective determination of Hcy. This proposed method displays a good linear response in the range 5–200 μM with a detection limit of 1.8 μM. In the practical assay of human plasma samples, the relative standard deviations (RSD) are lower than 11% and the recoveries are between 98.0 and 104.9%. In the assay of human urine samples, the RSD are below 9.0% and the recoveries range from 94.0 to 103.5%. The colorimetric method presented offers a convenient and accurate way for the determination of biomarkers in point-of-care testing (POCT).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059. https://doi.org/10.1021/acsnano.6b08232

    Article  CAS  PubMed  Google Scholar 

  2. Alam SF, Kumar S, Ganguly P (2019) Measurement of homocysteine: a historical perspective. J Clin Biochem Nutr 65:171–177. https://doi.org/10.3164/jcbn.19-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Espina JG, Montes-Bayón M, Sanz-Medel A (2015) Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection. Anal Bioanal Chem 407:7899–7906. https://doi.org/10.1007/s00216-015-8956-z

    Article  CAS  PubMed  Google Scholar 

  4. Chow CF, Lam MHW, Leung MKP (2002) Fluorescent sensing of homocysteine by molecular imprinting. Anal Chim Acta 466:17–30. https://doi.org/10.1016/S0003-2670(02)00520-2

    Article  CAS  Google Scholar 

  5. Stachniuk J, Kubalczyk P, Furmaniak P, Gowacki R (2016) A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection. Talanta 155:70–77. https://doi.org/10.1016/j.talanta.2016.04.031

    Article  CAS  PubMed  Google Scholar 

  6. Borowczyk K, Chwatko G, Kubalczyk P, Jakubowski H, Kubalska J, Glowacki R (2016) Simultaneous determination of methionine and homocysteine by on column derivatization with o-phthalaldehyde. Talanta 161:917–924. https://doi.org/10.1016/j.talanta.2016.09.039

    Article  CAS  PubMed  Google Scholar 

  7. Accinni R, Bartesaghi S, De Leo G, Cursano CF, Achilli G, Loaldi A, Cellerino C, Parodi O (2000) Screening of homocysteine from newborn blood spots by high-performance liquid chromatography with coulometric array detection. J Chromatogr A 896:183–189. https://doi.org/10.1016/S0021-9673(00)00715-9

  8. Magera MJ, Lacey JM, Bruno C, Piero R (1999) Method for the determination of total homocysteine in plasma and urine by stable isotope dilution and electrospray tandem mass spectrometry. Clin Chem 45:1517–1522. https://doi.org/10.1093/clinchem/45.9.1517

    Article  CAS  PubMed  Google Scholar 

  9. Kim MS, Cho S, Joo SH, Lee J, Kwak SK, Kim MI, Lee J (2019) N- and B- codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 13:4312–4321. https://doi.org/10.1021/acsnano.8b09519

    Article  CAS  PubMed  Google Scholar 

  10. Zhang T, Xing Y, Song Y, Gu Y, Yan X, Lu N, Liu H, Xu Z, Xu H, Zhang Z (2019) AuPt/MOF-graphene: a synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal Chem 91:10589–10595. https://doi.org/10.1021/acs.analchem.9b01715

  11. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1021/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  12. Liu CY, Miao YQ, Zhan XJ, Zhang SL, Zhao XJ (2020) Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Microchim Acta 187:362. https://doi.org/10.1007/s00604-020-04333-4

    Article  CAS  Google Scholar 

  13. Xian Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y (2021) Nanozyme based on CoFe2O4 modified with MoS2 for colorimetric determination of cysteine and glutathione. Microchim Acta 188:65. https://doi.org/10.1007/s00604-021-04702-7

    Article  CAS  Google Scholar 

  14. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Accounts Chem Res 52:2190–2200. https://doi.org/10.1021/acs.accounts.9b00140

    Article  CAS  Google Scholar 

  15. Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, Lin XH, Xia XH (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137:1706–1712. https://doi.org/10.1021/10.1039/c2an35072f

    Article  CAS  PubMed  Google Scholar 

  16. Ruan X, Liu D, Niu X, Wang Y, Simpson CD, Cheng N, Du D, Lin Y (2019) 2D Graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem 91:13847–13854. https://doi.org/10.1021/acs.analchem.9b03321

  17. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7:833–U76. https://doi.org/10.1038/nnano.2012.90

    Article  CAS  Google Scholar 

  18. Tarokh A, Pebdeni AB, Othman HO, Salehnia F, Hosseini M (2021) Sensitive colorimetric aptasensor based on g-C3N4@Cu2O composites for detection of Salmonella typhimurium in food and water. Microchim Acta 188:87. https://doi.org/10.1007/s00604-021-04745-w

    Article  CAS  Google Scholar 

  19. Wang Q, Wei H, Zhang Z, Wang W, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC-Trend Anal Chem 105:218–224. https://doi.org/10.1016/j.trac.2018.05.012

    Article  CAS  Google Scholar 

  20. Guo J, Wu S, Wang Y, Zhao M (2020) A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sensor Actuat B-Chem 312:128021. https://doi.org/10.1016/j.snb.2020.128021

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang X, Liu B, Liu J (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139:5412–5419. https://doi.org/10.1021/jacs.7b00601

    Article  CAS  PubMed  Google Scholar 

  22. Barrow SJ, Kasera S, Rowland MJ, Barrio JD, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406. https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  23. Shcherbakova EG, Zhang B, Gozem S, Minami T, Zavalij PY, Pushina M, Isaacs L, Anzenbacher P (2017) Supramolecular sensors for opiates and their metabolites. J Am Chem Soc 139:14954–14960. https://doi.org/10.1021/jacs.7b06371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berbeci LS, Wang W, Kaifer AE (2008) Drastically decreased reactivity of thiols and disulfides complexed by cucurbit[6]uril. Org Lett 10:3721–3724. https://doi.org/10.1021/ol8013667

    Article  CAS  PubMed  Google Scholar 

  25. Liu SD, Tian RZ, Xu JY, Wang L, Sun JX, Jiang XJ, Wang TT, Li XM, Luo Q, Liu JQ (2019) Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect. Chem Commun 55:13820–13823. https://doi.org/10.1039/c9cc07085k

    Article  CAS  Google Scholar 

  26. Jain Y, Kumari M, Singh RP, Kumar D, Gupta R (2020) Sonochemical decoration of graphene oxide with magnetic Fe3O4@CuO nanocomposite for efficient click synthesis of coumarin-sugar based bioconjugates and their cytotoxic activity. Cata Lett 150:1142–1154. https://doi.org/10.1007/s10562-019-02982-6

  27. Zhang L, Hai X, Xia C, Chen X, Wang J (2017) Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sensor Actuat B-Chem 248:374–384. https://doi.org/10.1016/j.snb.2017.04.011

    Article  CAS  Google Scholar 

  28. Zeng Y, Cai W, Shao X (2015) Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution. J Sep Sci 38:2053–2058. https://doi.org/10.1002/jssc.201500090

  29. Wang R, Cui Y, Hu F, Liu W, Du Q, Zhang Y, Zha J, Huang T, Fizir M, He H (2019) Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatog A 1591:62–70. https://doi.org/10.1016/j.chroma.2019.01.057

    Article  CAS  Google Scholar 

  30. Zheng S, Hu J, Zhong L, Song W, Wan L, Guo Y (2008) Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem Mate 20:3617–3622. https://doi.org/10.1021/cm7033855

    Article  CAS  Google Scholar 

  31. Qiu X, Zhou Y, Jin X, Qi A, Yang Y (2015) One-pot solvothermal synthesis of biocompatible magnetic nanoparticles mediated by cucurbit[n]urils. J Mater Chem C 3:3517–3521. https://doi.org/10.1039/C5TC00369E

    Article  CAS  Google Scholar 

  32. Refsum H, Helland S, Ueland PM (1985) Radioenzymic determination of homocysteine in plasma and urine. Clin Chem 31:624–628. https://doi.org/10.1093/clinchem/31.4.624

    Article  CAS  PubMed  Google Scholar 

  33. Purgat K, Olejarz P, Koska I, Glowacki R, Kubalczyk P (2020) Determination of homocysteine thiolactone in human urine by capillary zone electrophoresis and single drop microextraction. Anal Biochem 596:113640. https://doi.org/10.1016/j.ab.2020.113640

    Article  CAS  PubMed  Google Scholar 

  34. Beitollahi H, Zaimbashi R, Mahani MT, Tajik S (2020) A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 134:107497–107497. https://doi.org/10.1016/j.bioelechem.2020.107497

    Article  CAS  PubMed  Google Scholar 

  35. Xue H, Yu M, He K, Liu Y, Cao Y, Shui Y, Li J, Farooq M, Wang L (2020) A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-rhodamine B system. Anal Chim Acta 1127:39–48. https://doi.org/10.1016/j.aca.2020.06.039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Independent Innovation Fund Project of Agricultural Science and Technology of Jiangsu Province in 2017 (No. CX (17) 1003), the Natural Science Foundation of China Projects (No. 81950410634, No. QNJ20200010003) for a Foreign Youth Project fund, and Innovation and Entrepreneurship Training Program for Undergraduate (No. 202010316209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Dramou or Hua He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 10479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Jiang, C., Wang, F. et al. Nanozyme based on graphene oxide modified with Fe3O4, CuO, and cucurbit[6]uril for colorimetric determination of homocysteine. Microchim Acta 188, 207 (2021). https://doi.org/10.1007/s00604-021-04868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04868-0

Keywords

Navigation