Skip to main content

Advertisement

Log in

Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS–LFIA detector

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable surface-enhanced Raman scattering (SERS)–lateral flow immunoassay (LFIA) detector has been developed for the automatic and highly sensitive detection of West Nile virus (WNV) non-structural protein 1 (NS1) and actual WNV samples. Au@Ag nanoparticles (Au@Ag NPs) labeled with double-layer Raman molecules were used as SERS tags to prepare WNV-specific SERS–LFIA strips. On this platform, the WNV-specific antigen NS1 protein was quantitatively and sensitively detected. The detection limit for the WNV NS1 protein was 0.1 ng/mL, which was 100-fold more sensitive than visual signals. The detection limit for inactivated WNV virions was 0.2 × 102 copies/μL. The sensitivity of the SERS–LFIA detector was comparable to that of the fluorescence quantitative reverse transcription-polymerase chain reaction assay. The prepared SERS–LFIA strips exhibited high sensitivity and good specificity for WNV. Thus, the strips developed herein have clinical application value. Moreover, the portable SERS–LFIA detector enabled automatic and rapid detection of the SERS–LFIA strips. The platform established herein is expected to make a substantial contribution to the diagnosis and control of outbreaks of emerging infectious diseases, including WNV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cui F, Zhou HS (2020) Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron 165:112349. https://doi.org/10.1016/j.bios.2020.112349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Priyadarsini SL, Suresh M, Huisingh D (2020) What can we learn from previous pandemics to reduce the frequency of emerging infectious diseases like COVID-19? Glob Transit 2:202–220. https://doi.org/10.1016/j.glt.2020.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kraemer MUG, Golding N, Bisanzio D, Bhatt S, Pigott DM, Ray SE, Brady OJ, Brownstein JS, Faria NR, Cummings DAT (2019) Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Sci Rep 9(1):5151. https://doi.org/10.1038/s41598-019-41192-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boga JA, Alvarez-Arguelles ME, Rojo-Alba S, Rodriguez M, de Ona M, Melon S (2019) Simultaneous detection of dengue virus, Chikungunya virus, Zika virus, yellow fever virus and West Nile virus. J Virol Methods 268:53–55. https://doi.org/10.1016/j.jviromet.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  5. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Fu Gao G, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141. https://doi.org/10.1016/j.bios.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  6. Lee S, Mehta S, Erickson D (2016) Two-color lateral flow assay for multiplex detection of causative agents behind acute febrile illnesses. Anal Chem 88(17):8359–8363. https://doi.org/10.1021/acs.analchem.6b01828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rong Z, Wang Q, Sun N, Jia X, Wang K, Xiao R, Wang S (2019) Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 1055:140–147. https://doi.org/10.1016/j.aca.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  8. Aberle SW, Kolodziejek J, Jungbauer C, Stiasny K, Aberle JH, Zoufaly A, Hourfar MK, Weidner L, Nowotny N (2018) Increase in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveillance 23(43). https://doi.org/10.2807/1560-7917

  9. Kaiser JA, Barrett ADT (2019) Twenty years of progress toward West Nile virus vaccine development. Viruses 11(9). https://doi.org/10.3390/v11090823

  10. Napp S, Petric D, Busquets N (2018) West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog Glob Health 112(5):233–248. https://doi.org/10.1080/20477724.2018.1483567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ziegler U, Luhken R, Keller M, Cadar D, van der Grinten E, Michel F, Albrecht K, Eiden M, Rinder M, Lachmann L, Hoper D, Vina-Rodriguez A, Gaede W, Pohl A, Schmidt-Chanasit J, Groschup MH (2019) West Nile virus epizootic in Germany, 2018. Antivir Res 162:39–43. https://doi.org/10.1016/j.antiviral.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Bolfa P, Jeon I, Loftis A, Leslie T, Marchi S, Sithole F, Beck C, Lecollinet S, Zientara S, Hans A, Issel CJ (2017) Detection of West Nile virus and other common equine viruses in three locations from the Leeward Islands, West Indies. Acta Trop 174:24–28. https://doi.org/10.1016/j.actatropica.2017.06.023

    Article  PubMed  Google Scholar 

  13. David S, Abraham AM (2016) Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect Dis (Lond) 48(8):571–586. https://doi.org/10.3109/23744235.2016.1164890

    Article  Google Scholar 

  14. Gorchakov R, Gulas-Wroblewski BE, Ronca SE, Ruff JC, Nolan MS, Berry R, Alvarado RE, Gunter SM, Murray KO (2019) Optimizing PCR detection of West Nile virus from body fluid specimens to delineate natural history in an infected human cohort. Int J Mol Sci 20(8). https://doi.org/10.3390/ijms20081934

  15. Cao L, Fu S, Lu Z, Tang C, Gao X, Li X, Lei W, He Y, Li M, Cao Y, Wang H, Liang G (2019) Detection of West Nile virus infection in viral encephalitis cases, China. Vector Borne Zoonotic Dis 19(1):45–50. https://doi.org/10.1089/vbz.2018.2275

    Article  PubMed  Google Scholar 

  16. Busquets N, Laranjo-Gonzalez M, Soler M, Nicolas O, Rivas R, Talavera S, Villalba R, San Miguel E, Torner N, Aranda C, Napp S (2019) Detection of West Nile virus lineage 2 in north-eastern Spain (Catalonia). Transbound Emerg Dis 66(2):617–621. https://doi.org/10.1111/tbed.13086

    Article  PubMed  Google Scholar 

  17. He Y, Su S, Xu T, Zhong Y, Zapien JA, Li J, Fan C, Lee S-T (2011) Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 6(2):122–130. https://doi.org/10.1016/j.nantod.2011.02.004

    Article  CAS  Google Scholar 

  18. Gao R, Cheng Z, deMello AJ, Choo J (2016). Lab Chip 16(6):1022–1029. https://doi.org/10.1039/c5lc01249j

  19. Gracie K, Correa E, Mabbott S, Dougan JA, Graham D, Goodacre R, Faulds K (2014) Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem Sci 5(3):1030–1040. https://doi.org/10.1039/c3sc52875h

    Article  CAS  Google Scholar 

  20. Kang JW, So PTC, Dasari RR, Lim DK (2015) High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-Nanogap. Nano Lett 15(3):1766–1772. https://doi.org/10.1021/nl504444w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ko J, Lee C, Choo J (2015) Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. J Hazard Mater 285:11–17. https://doi.org/10.1016/j.jhazmat.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  22. Liu K, Bai Y, Zhang L, Yang Z, Fan Q, Zheng H, Yin Y, Gao C (2016) Porous au-Ag Nanospheres with high-density and highly accessible hotspots for SERS analysis. Nano Lett 16(6):3675–3681. https://doi.org/10.1021/acs.nanolett.6b00868

    Article  CAS  PubMed  Google Scholar 

  23. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115(19):10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Du X (2016) Carbon Nanodot-decorated Ag@SiO2 nanoparticles for fluorescence and surface-enhanced Raman scattering immunoassays. ACS Appl Mater Interfaces 8(1):1033–1040. https://doi.org/10.1021/acsami.5b11446

    Article  CAS  PubMed  Google Scholar 

  25. Pang Y, Wang C, Wang J, Sun Z, Xiao R, Wang S (2016) Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens Bioelectron 79:574–580. https://doi.org/10.1016/j.bios.2015.12.052

    Article  CAS  PubMed  Google Scholar 

  26. Ye H, Liu Y, Zhan L, Liu Y, Qin Z (2020) Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics 10(10):4359–4373. https://doi.org/10.7150/thno.44298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T (2016) Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 81:8–14. https://doi.org/10.1016/j.bios.2016.01.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Zhang L, Huang Y, Dandapat A, Dai L, Zhang G, Lu X, Zhang J, Lai W, Chen T (2017) Hollow Au-Ag nanoparticles labeled Immunochromatography strip for highly sensitive detection of clenbuterol. Sci Rep 7:41419. https://doi.org/10.1038/srep41419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eryilmaz M, Acar Soykut E, Cetin D, Boyaci IH, Suludere Z, Tamer U (2019) SERS-based rapid assay for sensitive detection of group A Streptococcus by evaluation of the swab sampling technique. Analyst 144(11):3573–3580. https://doi.org/10.1039/c9an00173e

    Article  CAS  PubMed  Google Scholar 

  30. Gao X, Zheng P, Kasani S, Wu S, Yang F, Lewis S, Nayeem S, Engler-Chiurazzi EB, Wigginton JG, Simpkins JW, Wu N (2017) Paper-based surface-enhanced Raman scattering lateral flow strip for detection of neuron-specific enolase in blood plasma. Anal Chem 89(18):10104–10110. https://doi.org/10.1021/acs.analchem.7b03015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stambach NR, Carr SA, Cox CR, Voorhees KJ (2015) Rapid detection of Listeria by bacteriophage amplification and SERS-lateral flow immunochromatography. Viruses 7(12):6631–6641. https://doi.org/10.3390/v7122962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tran V, Walkenfort B, Konig M, Salehi M, Schlucker S (2019) Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem Int Ed 58(2):442–446. https://doi.org/10.1002/anie.201810917

    Article  CAS  Google Scholar 

  33. Zhang D, Huang L, Liu B, Ge Q, Dong J, Zhao X (2019) Rapid and ultrasensitive quantification of multiplex respiratory tract infection pathogen via lateral flow microarray based on SERS Nanotags. Theranostics 9(17):4849–4859. https://doi.org/10.7150/thno.35824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang R, Kim K, Choi N, Wang X, Lee J, Jeon JH, G-e R, Choo J (2018) Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors Actuators B 270:72–79. https://doi.org/10.1016/j.snb.2018.04.162

    Article  CAS  Google Scholar 

  35. Sánchez-Purrà M, Roig-Solvas B, Versiani A, Rodriguez-Quijada C, de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K (2017) Design of SERS nanotags for multiplexed lateral flow immunoassays. Mol Syst Des Eng 2(4):401–409. https://doi.org/10.1039/c7me00052a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537. https://doi.org/10.1016/j.bios.2015.11.099

    Article  CAS  PubMed  Google Scholar 

  37. Xiao R, Lu L, Rong Z, Wang C, Peng Y, Wang F, Wang J, Sun M, Dong J, Wang D, Wang L, Sun N, Wang S (2020) Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens Bioelectron 168:112524. https://doi.org/10.1016/j.bios.2020.112524

    Article  CAS  PubMed  Google Scholar 

  38. Jia X, Wang C, Rong Z, Li J, Wang K, Qie Z, Xiao R, Wang S (2018) Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of mycoplasma pneumoniae infection. RSC Adv 8(38):21243–21251. https://doi.org/10.1039/c8ra03323d

    Article  CAS  Google Scholar 

  39. Ding XX, Li XF, Deng YQ, Guo YH, Hao W, Che XY, Qin CF, Fu N (2014) Development of a double antibody sandwich ELISA for West Nile virus detection using monoclonal antibodies against non-structural protein 1. PLoS One 9(10):e108623. https://doi.org/10.1371/journal.pone.0108623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Rui Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 6315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Liu, Z., Peng, Y. et al. Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS–LFIA detector. Microchim Acta 188, 206 (2021). https://doi.org/10.1007/s00604-021-04857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04857-3

Keywords

Navigation