Skip to main content
Log in

A fluorometric assay for α-glucosidase activity based on quaternary AgInZnS QDs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive fluorescence strategy was constructed for the detection of α-glucosidase activity based on AgInZnS QDs. The AIZS QDs which were synthesized by hydrothermal method have a fluorescence emission wavelength of 554 nm. Ce4+ was able to oxidize p-phenylenediamine (PPD) to generate oxPPD, which can quench the fluorescence of AIZS QDs through dynamic quenching. When α-glucosidase was introduced into the system, L-ascorbic acid-2-O-α-D-glucopyranosyl (AAG) could be hydrolyzed to form ascorbic acid (AA), which can reduce Ce4+ and prevent the oxidation of PPD. Thus, the dynamic quenching process was blocked accompanying with the fluorescence recovery of AIZS QDs. The developed detection system for α-glucosidase displayed a good linear relationship between 0.01 and 0.16 U·mL−1 with a detection limit of 0.0073 U·mL−1. The sensing platform with high feasibility and anti-interference is a competitive alternative applied to α-glucosidase-related diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang J, Liu Y, Wang X, Chen Y, Li G (2015) Electrochemical assay of alpha-glucosidase activity and the inhibitor screening in cell medium. Biosens Bioelectron 74:666–672. https://doi.org/10.1016/j.bios.2015.07.023

    Article  CAS  PubMed  Google Scholar 

  2. Emamalipour M, Seidi K, Jahanban-Esfahlan A, Jahanban-Esfahlan R (2019) Implications of resistin in type 2 diabetes mellitus and coronary artery disease: impairing insulin function and inducing pro-inflammatory cytokines. J Cell Physiol 234(12):21758–21769. https://doi.org/10.1002/jcp.28913

    Article  CAS  PubMed  Google Scholar 

  3. Li G, Kong W, Zhao M, Lu S, Gong P, Chen G, Xia L, Wang H, You J, Wu Y (2016) A fluorescence resonance energy transfer (FRET) based "turn-on" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to alpha-glucosidase inhibitor screening. Biosens Bioelectron 79:728–735. https://doi.org/10.1016/j.bios.2015.12.094

    Article  CAS  PubMed  Google Scholar 

  4. Gollapalli M, Taha M, Javid MT, Almandil NB, Rahim F, Wadood A, Mosaddik A, Ibrahim M, Alqahtani MA, Bamarouf YA (2019) Synthesis of benzothiazole derivatives as a potent alpha-glucosidase inhibitor. Bioorg Chem 85:33–48. https://doi.org/10.1016/j.bioorg.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Liu Y, Lv J, Cao Y, Li G (2014) Dipeptidyl peptidase-IV activity assay and inhibitorscreening using a gold nanoparticle-modified gold electrode with an immobilized enzyme substrate. Microchim Acta 182(1–2):281–288. https://doi.org/10.1007/s00604-014-1329-z

    Article  CAS  Google Scholar 

  6. Chen H, Zhang J, Wu H, Koh K, Yin Y (2015) Sensitive colorimetric assays for alpha-glucosidase activity and inhibitor screening based on unmodified gold nanoparticles. Anal Chim Acta 875:92–98. https://doi.org/10.1016/j.aca.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  7. Tang C, Qian Z, Qian Y, Huang Y, Zhao M, Ao H, Feng H (2017) A fluorometric and real-time assay for α-glucosidase activity through supramolecular self-assembly and its application for inhibitor screening. Sensors Actuators B Chem 245:282–289. https://doi.org/10.1016/j.snb.2017.01.150

    Article  CAS  Google Scholar 

  8. Liu SY, Wang H, He T, Qi L, Zhang ZQ (2016) Sensitive fluorimetric assays for alpha-glucosidase activity and inhibitor screening based on beta-cyclodextrin-coated quantum dots. Luminescence 31(1):96–101. https://doi.org/10.1002/bio.2929

    Article  CAS  PubMed  Google Scholar 

  9. Shi H, Jia L, Wang C, Liu E, Ji Z, Fan J (2020) A high sensitive and selective fluorescent probe for dopamine detection based on water soluble AgInS2 quantum dots. Optical materials 99:109549. https://doi.org/10.1016/j.optmat.2019.109549

    Article  CAS  Google Scholar 

  10. Ja L, Wang F, Han Y, Sun M, Li H, Hua H, Chen C, Lin Y (2015) Polyamidoamine functionalized CdTeSe quantum dots for sensitive detection of Cry1Ab protein in vitro and in vivo. Sensors Actuators B Chem 206:8–13. https://doi.org/10.1016/j.snb.2014.09.009

    Article  CAS  Google Scholar 

  11. Han X-L, Li Q, Hao H, Liu C, Li R, Yu F, Lei J, Jiang Q, Liu Y, Hu J (2020) Facile one-step synthesis of quaternary AgInZnS quantum dots and their applications for causing bioeffects and detecting Cu2+. RSC Adv 10(16):9172–9181. https://doi.org/10.1039/c9ra09840b

    Article  CAS  Google Scholar 

  12. Jin Q, Li Y, Huo J, Zhao X (2016) The “off–on” phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensors Actuators B Chem 227:108–116. https://doi.org/10.1016/j.snb.2015.12.036

    Article  CAS  Google Scholar 

  13. Qiu L, Zhao Y, Cao N, Cao L, Sun L, Zou X (2016) Silver nanoparticle-gated fluorescence porous silica nanospheres for glutathione-responsive drug delivery. Sensors Actuators B Chem 234:21–26. https://doi.org/10.1016/j.snb.2016.04.136

    Article  CAS  Google Scholar 

  14. Tang X, Yu K, Xu Q, Choo ESG, Goh GKL, Xue J (2011) Synthesis and characterization of AgInS2–ZnS heterodimers with tunable photoluminescence. J Mater Chem 21(30):11239. https://doi.org/10.1039/c1jm11346a

    Article  CAS  Google Scholar 

  15. Wang D, Zheng W, Hao C, Peng Q, Li Y (2008) General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem Commun (Camb) 22:2556–2558. https://doi.org/10.1039/b800726h

    Article  CAS  Google Scholar 

  16. Kumar P, Kumar P, Manhas S, Navani NK (2016) A simple method for detection of anionic detergents in milk using unmodified gold nanoparticles. Sensors Actuators B Chem 233:157–161. https://doi.org/10.1016/j.snb.2016.04.066

    Article  CAS  Google Scholar 

  17. Ma Z, Sun Y, Xie J, Li P, Lu Q, Liu M, Yin P, Li H, Zhang Y, Yao S (2020) Facile preparation of MnO2 quantum dots with enhanced fluorescence via microenvironment engineering with the assistance of some reductive biomolecules. ACS Appl Mater Interfaces 12(13):15919–15927. https://doi.org/10.1021/acsami.0c00917

    Article  CAS  PubMed  Google Scholar 

  18. Ma Z, Xu Y, Li P, Cheng D, Zhu X, Liu M, Zhang Y, Liu Y, Yao S (2021) Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine. Anal Chem 93(7):3586–3593. https://doi.org/10.1021/acs.analchem.0c05102

    Article  CAS  PubMed  Google Scholar 

  19. Zang Z, Zeng X, Wang M, Hu W, Liu C, Tang X (2017) Tunable photoluminescence of water-soluble AgInZnS-graphene oxide (GO) nanocomposites and their application in-vivo bioimaging. Sens Actuator B-Chem 252:1179–1186. https://doi.org/10.1016/j.snb.2017.07.144

    Article  CAS  Google Scholar 

  20. Li S, Chen Y, Huang L, Pan D (2013) Simple continuous-flow synthesis of cu-in-Zn-S/ZnS and Ag-in-Zn-S/ZnS core/shell quantum dots. Nanotechnology 24(39):395705. https://doi.org/10.1088/0957-4484/24/39/395705

    Article  CAS  PubMed  Google Scholar 

  21. Mrad M, Ben Chaabane T, Rinnert H, Lavinia B, Jasniewski J, Medjahdi G, Schneider R (2020) Aqueous synthesis for highly emissive 3-Mercaptopropionic acid-capped AIZS quantum dots. Inorg Chem 59(9):6220–6231. https://doi.org/10.1021/acs.inorgchem.0c00347

    Article  CAS  PubMed  Google Scholar 

  22. Narayanan TN, Gupta BK, Vithayathil SA, Aburto RR, Mani SA, Taha-Tijerina J, Xie B, Kaipparettu BA, Torti SV, Ajayan PM (2012) Hybrid 2D nanomaterials as dual-mode contrast agents in cellular imaging. Adv Mater 24(22):2992–2998. https://doi.org/10.1002/adma.201200706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhuo S, Shao M, Lee S-T (2012) Upconversion and Downconversion fluorescent Graphene quantum dots: ultrasonic preparation and Photocatalysis. ACS Nano 6(2):1059–1064. https://doi.org/10.1021/nn2040395

    Article  CAS  PubMed  Google Scholar 

  24. Chen ML, Liu JW, Hu B, Chen ML, Wang JH (2011) Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst 136(20):4277–4283. https://doi.org/10.1039/c1an15474e

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Ho WBA, Xue JM (2012) Synthesis of Zn-doped AgInS2 Nanocrystals and their fluorescence properties. J Phys Chem C 116(17):9769–9773. https://doi.org/10.1021/jp207711p

    Article  CAS  Google Scholar 

  26. Sheng Y, Tang X, Peng E, Xue J (2013) Graphene oxide based fluorescent nanocomposites for cellular imaging. J Mater Chem B 1(4):512–521. https://doi.org/10.1039/c2tb00123c

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Zhang F, He X, Ma P, Huang Y, Tao S, Sun Y, Wang X, Song D (2019) A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sensors Actuators B Chem 294:263–269. https://doi.org/10.1016/j.snb.2019.05.057

    Article  CAS  Google Scholar 

  28. Liu Y, Tang X, Deng M, Zhu T, Bai Y, Qu D, Huang X, Qiu F (2018) One-step aqueous synthesis of highly luminescent hydrophilic AgInZnS quantum dots. J Lumin 202:71–76. https://doi.org/10.1016/j.jlumin.2018.05.040

    Article  CAS  Google Scholar 

  29. Tang X, Zang Z, Zu Z, Chen W, Liu Y, Han G, Lei X, Liu X, Du X, Chen W, Wang Y, Xue J (2014) A facile method for the synthesis of quaternary Ag-in-Zn-S alloyed nanorods. Nanoscale 6(20):11803–11809. https://doi.org/10.1039/c4nr03231d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21775052 and No. 21575048), the Science and Technology Development project of Jilin province, China (No. 20180414013GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Su.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, J., Wang, M. et al. A fluorometric assay for α-glucosidase activity based on quaternary AgInZnS QDs. Microchim Acta 188, 227 (2021). https://doi.org/10.1007/s00604-021-04855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04855-5

Keywords

Navigation