Skip to main content
Log in

Graphene oxide@Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive voltammetric sensor has been developed for hazardous methyl parathion detection (MP) using graphene oxide@Ce-doped TiO2 nanoparticle (GO@Ce-doped TiO2 NP) electrocatalyst. The GO@Ce-doped TiO2 NPs were prepared through the sol-gel method and characterized by various physicochemical and electrochemical techniques. The GO@Ce-doped TiO2 NP–modified glassy carbon electrode (GCE) addresses excellent electrocatalytic activity towards MP detection for environmental safety and protection. The developed strategy of GO@Ce-doped TiO2 NPs at GCE surfaces for MP detection achieved excellent sensitivity (2.359 μA μM−1 cm−2) and a low detection limit (LOD) 0.0016 μM with a wide linear range (0.002 to 48.327 μM). Moreover, the fabricated sensor shows high selectivity and long-term stability towards MP detection; this significant electrode further paves the way for real-time monitoring of environmental quantitative samples with satisfying recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fahimi-Kashani N, Hormozi-Nezhad MR (2016) Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem 88(16):8099–8106

    Article  CAS  Google Scholar 

  2. Huang G, Ouyang J, Baeyens WR, Yang Y, Tao C (2002) High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection. Anal Chim Acta 474(1–2):21–29

    Article  CAS  Google Scholar 

  3. Wang J, Chatrathi MP, Mulchandani A, Chen W (2001) Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal Chem 73(8):1804–1808

    Article  CAS  Google Scholar 

  4. Juhler ​RK (1997) Optimized method for the determination of organophosphorus pesticides in meat and fatty matrices. J Chromatogr A 786(1):145-153

  5. Ramachandran T, Dhayabaran VV (2019) Utilization of a MnO2/ polythiophene/rGO nanocomposite modified glassy carbon electrode as an electrochemical sensor for methyl parathion. J Mater Sci Mater Electron 30(13):12315–12327

    Article  CAS  Google Scholar 

  6. Rassaei L, Marken F, Sillanpää M, Amiri M, Cirtiu CM, Sillanpää M (2011) Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trends Anal Chem 30(11):1704–1715

    Article  CAS  Google Scholar 

  7. Xiaoping T, Yan L, Tingying Z, Shasha L, Xi L, Hexiang T, Yang Y, Chunlian C (2019) Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar [5] arene and reduced graphene nanocomposite. RSC Adv 9:345–353

    Article  Google Scholar 

  8. Cuiling X, Kangbing W, Shengshui H, Dafu C (2002) Electrochemical detection of parathion at a glassy-carbon electrode modified with hexadecane. Anal Bioanal Chem 373:284–288

    Article  Google Scholar 

  9. Yuhui L, Xin C, Zhiqi L, Lili S, Guozhen F, Jifeng L, Shuo W (2020) Electrochemical detection of organophosphorus pesticides based on amino acids-conjugated P3TAA-modified electrodes. Analyst 9:345

    Google Scholar 

  10. Amal HA, Hassana B, Silio LM, Fatma HMA, Walaa AM, Maria del Pilar TS, Maria IP (2018) Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron 118:181–187

    Article  Google Scholar 

  11. Mohamed K, Haytham AA, Craig EB (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111

    Article  Google Scholar 

  12. Shaktivel M, Pitchaimani V, Chen SM, Lin KC (2020) Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Microchim Acta 187:1–13

    Article  Google Scholar 

  13. Xike T, Lin L, Yong L, Chao Y, Zhaoxin Z, Yulun N (2018) Yanxin Wang Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sensors Actuators B Chem 256:135–142

    Article  Google Scholar 

  14. Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135(27):9995–9998

    Article  CAS  Google Scholar 

  15. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy 45(13):7764–7778

    Article  CAS  Google Scholar 

  16. Štengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114(1):217–226

    Article  Google Scholar 

  17. Shetti NP, Nayak DS, Malode SJ, Kulkarni RM (2017) Electrochemical sensor based upon ruthenium doped TiO2 nanoparticles for the determination of flufenamic acid. J Electrochem Soc 164(5):B3036–B3042

    Article  CAS  Google Scholar 

  18. Xu AW, Gao Y, Liu HQ (2002) The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal 207(2):151–157

    Article  CAS  Google Scholar 

  19. Dhanalakshmi J, Iyyapushpam S, Nishanthi S, Malligavathy M, Padiyan DP (2017) Nanotechnology. Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Adv Nat Sci Nanosci Nanotechnol 8(1):015015

    Article  Google Scholar 

  20. Tayel A, Ramadan AR, El Seoud OA (2018) Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysis 8(11):491

    Google Scholar 

  21. Ali AA, Madkour M, Sagheer FA, Zaki MI, Abdel Nazeer A (2020) Low-temperature catalytic CO oxidation over non-Noble, efficient chromia in reduced graphene oxide and graphene oxide nanocomposites. Catalysis 10(1):105

    CAS  Google Scholar 

  22. Sun D, Luo Y, Debliquy M, Zhang C (2018) Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J Nanotechnol 9(1):2832–2844

    Article  CAS  Google Scholar 

  23. Xue X, Qin W, Dan W, He L, Yong Z, Feng R, Bin D (2014) Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim Acta 116:366–371

    Article  CAS  Google Scholar 

  24. Durairaj S, Ruby J, Kaliyamoorthy JB, George Peter GK, Kunjithapatham S (2017) Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine. Microchim Acta 184:781–790

    Article  Google Scholar 

  25. Yan N, Zhu Z, Zhang J, Zhao Z, Liu Q (2012) Preparation and properties of Ce-doped TiO2 photocatalyst. Mater Res Bull 47(8):1869–1873

    Article  CAS  Google Scholar 

  26. Jafari A, Khademi S, Farahmandjou M (2018) Nano-crystalline Ce-doped TiO2 powders: sol-gel synthesis and optoelectronic properties. Mater Res Express 5(9):095008

    Article  Google Scholar 

  27. Kaur N, Shahi SK, Singh V (2015) Anomalous behavior of visible light active TiO2 for the photocatalytic degradation of different reactive dyes. Photochem Photobiol Sci 14(11):2024–2034

    Article  CAS  Google Scholar 

  28. Basheer C (2012) Application of titanium dioxide-graphene composite material for photocatalytic degradation of alkylphenols. J Chem 2013:456586. https://doi.org/10.1155/2013/456586

  29. Rani BJ, Praveenkumar M, Ravichandran S, Ganesh V, Guduru RK, Ravi G, Yuvakkumar (2019) R Ultrafine M-doped TiO2 (M= Fe, Ce, La) nanosphere photoanodes for photoelectrochemical water-splitting applications. Mater Charact 152:188–203

    Article  CAS  Google Scholar 

  30. Wang P, Liu ZG, Chen X, Meng FL, Liu JH, Huang XJ (2013) UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. J Mater Chem A 1(32):9189–9195

    Article  CAS  Google Scholar 

  31. Kissinger PT, Heineman WR (1983) Cyclic voltammetry. J Chem Educ 60(9):702

    Article  CAS  Google Scholar 

  32. Karikalan N, Velmurugan M, Chen SM, Karuppiah C, Al-Anazi K, Ali MA, Lou BS (2016) Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Adv 6(75):71507–71516

    Article  CAS  Google Scholar 

  33. Erk N (2004) Voltammetric behaviour and determination of moxifloxacin in pharmaceutical products and human plasma. Anal Bioanal Chem 378(5):1351–1356

    Article  CAS  Google Scholar 

  34. Li Y, Zou L, Song G, Li K, Ye B (2013) Electrochemical behavior of sophoridine at a new amperometric sensor based on l-Theanine modified electrode and its sensitive determination. J Electroanal Chem 709:1–9

    Article  CAS  Google Scholar 

  35. Ansari S, Ansari MS, Satsangee S, Jain R (2019) WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal Chim Acta 1046:99–109

    Article  CAS  Google Scholar 

  36. Reddy YVM, Bathinapatla S, Łuczak T, Osińska M, Maseed H, Ragavendra P, Sarma LS, Srikanth V, Madhavi G (2018) An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New J Chem 42(4):3137–3146

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Funding

This study received financial assistance from the National Kaohsiung University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Fu Hsu, Sea-Fue Wang, Cheng-Di Dong or Mohamed A. Habila.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2070 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehru, R., Hsu, YF., Wang, SF. et al. Graphene oxide@Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim Acta 188, 216 (2021). https://doi.org/10.1007/s00604-021-04847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04847-5

Keywords

Navigation