Skip to main content
Log in

Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Acute myocardial infarction (AMI) is a significant health problem owing to its high mortality rate. Heart-type fatty acid–binding protein (h-FABP) is an important biomarker in the diagnosis of AMI. In this work, an electrochemical h-FABP immunosensor was developed based on Cd0.5Zn0.5S/d-Ti3C2Tx MXene (MXene: Transition metal carbide or nitride) composite as signal amplificator and core-shell high-crystalline graphitic carbon nitride@carbon dots (hc-g-C3N4@CDs) as electrochemical sensor platform. Firstly, a facile calcination technique was applied to the preparation of hc-g-C3N4@CDs and immobilization of primary antibody was performed on hc-g-C3N4@CDs surface. Then, the conjugation of the second antibody to Cd0.5Zn0.5S/d-Ti3C2Tx MXene was carried out by strong π-π and electrostatic interactions. The prepared electrochemical h-FABP immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, Fourier-transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The prepared electrochemical h-FABP immunosensor indicated a good sensitivity with detection limit (LOD) of 3.30 fg mL−1 in the potential range +0.1 to +0.5 V. Lastly, low-cost, satisfactory stable, and environmentally friendly immunosensor was presented for the diagnosis of acute myocardial infarction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson JL, Morrow DA (2017) Acute myocardial infarction. New Engl J Med 376(21):2053–2064

    Article  CAS  PubMed  Google Scholar 

  2. ten Berg JM, Deneer VH (2012) Antiplatelet therapy: does CYP2C19 genotype affect clinical outcome? Nat Rev Cardiol 9(4):192–194

    Article  PubMed  Google Scholar 

  3. Ye XD, He Y, Wang S, Wong GT, Irwin MG, Xia Z (2018) Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin 39(7):1155–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M (2020) Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: what do we know so far? J Clin Med 9(1):164

    Article  CAS  PubMed Central  Google Scholar 

  5. Ohkaru Y, Asayama K, Ishii H, Nishimura S, Sunahara N, Tanaka T, Kawamura K (1995) Development of a sandwich enzyme-linked immunosorbent assay for the determination of human heart type fatty acid-binding protein in plasma and urine by using two different monoclonal antibodies specific for human heart fatty acid-binding protein. J Immunol Methods 178(1):99–111

    Article  CAS  PubMed  Google Scholar 

  6. Savin M, Mihailescu CM, Matei I, Stan D, Moldovan CA, Ion M, Baciu I (2018) A quantum dot-based lateral flow immunoassay for the sensitive detection of human heart fatty acid binding protein (hFABP) in human serum. Talanta. 178:910–915

    Article  CAS  PubMed  Google Scholar 

  7. Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL (2020) Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec 20(7):682–692

    Article  CAS  PubMed  Google Scholar 

  8. Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H, Abbaspourrad A, Agarwal S, Gupta VK (2019) A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sensor Actuat B-Chem 284:568–574

    Article  CAS  Google Scholar 

  9. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2019) 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B-Eng 172:666–670

    Article  CAS  Google Scholar 

  10. Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605(2):111–129

    Article  CAS  PubMed  Google Scholar 

  11. Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212

    Article  CAS  PubMed  Google Scholar 

  12. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2018) Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta. 176:208–213

    Article  CAS  PubMed  Google Scholar 

  13. Karimi-Maleh H, Yola ML, Atar N, Orooji Y, Karimi F, Kumar PS, Rouhi J, Baghayeri M (2021) A novel detection method for organophosphorus insecticide fenamiphos: molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interface Sci 592:174–185

    Article  CAS  PubMed  Google Scholar 

  14. Asif M, Liu HW, Aziz A, Wang HT, Wang ZY, Ajmal M, Xiao F, Liu HF (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359

    Article  CAS  PubMed  Google Scholar 

  15. Ashraf G, Asif M, Aziz A, Iftikhar T, Liu HF (2021) Rice-spikelet-like copper oxide decorated with platinum stranded in the CNT network for electrochemical in vitro detection of serotonin. ACS Appl Mater Interfaces 13(5):6023–6033

    Article  CAS  PubMed  Google Scholar 

  16. Asif M, Aziz A, Azeem M, Wang ZY, Ashraf G, Xiao F, Chen XD, Liu HF (2018) A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv Colloid Interfac 262:21–38

    Article  CAS  Google Scholar 

  17. Asif M, Wang HT, Shuang D, Aziz A, Zhang GA, Xiao F, Liu HF (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sensor Actuat B-Chem 239:243–252

    Article  CAS  Google Scholar 

  18. Asif M, Aziz A, Wang ZY, Ashraf G, Wang JL, Luo HB, Chen XD, Xiao F, Liu HF (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920

    Article  CAS  PubMed  Google Scholar 

  19. O’Regan TM, Pravda M, O’Sullivan CK, Guilbault GG (2002) Development of a disposable immunosensor for the detection of human heart fatty-acid binding protein in human whole blood using screen-printed carbon electrodes. Talanta. 57(3):501–510

    Article  PubMed  Google Scholar 

  20. Stan D, Mihailescu CM, Iosub R, Moldovan C, Savin M, Baciu I (2012) Electrochemical studies of homogeneous self-assembled monolayers versus mixed self-assembled monolayers on gold electrode for “label free” detection of heart fatty acid binding protein. Thin Solid Films 526:143–149

    Article  CAS  Google Scholar 

  21. Mihailescu CM, Stan D, Iosub R, Moldovan C, Savin M (2015) A Sensitive capacitive immunosensor for direct detection of human heart fatty acid-binding protein (h-FABP). Talanta. 132:37–43

    Article  CAS  PubMed  Google Scholar 

  22. Gan XF, Han DB, Wang JM, Liu P, Li XR, Zheng QY, Yan YR (2021) A highly sensitive electrochemiluminescence immunosensor for h-FABP determination based on self-enhanced luminophore coupled with ultrathin 2D nickel metal-organic framework nanosheets. Biosens Bioelectron 171:112735

    Article  CAS  PubMed  Google Scholar 

  23. Hao XQ, Zhou J, Cui ZW, Wang YC, Wang Y, Zou ZG (2018) Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl Catal B-Environ 229:41–51

    Article  CAS  Google Scholar 

  24. Sun T, Jiang HY, Ma CC, Mao F, Xue B (2016) Ag/g-C3N4 photocatalysts: microwave-assisted synthesis and enhanced visible-light photocatalytic activity. Catal Commun 79:45–48

    Article  CAS  Google Scholar 

  25. Sun HR, Guo F, Pan JJ, Huang W, Wang K, Shi WL (2021) One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem Eng J 406:126844

    Article  CAS  Google Scholar 

  26. Shi WL, Liu C, Li MY, Lin X, Guo F, Shi JY (2020) Fabrication of ternary Ag3PO4/Co-3(PO4)(2)/g-C3N4 heterostructure with following type II and Z-scheme dual pathways for enhanced visible-light photocatalytic activity. J Hazard Mater 389:121907

    Article  CAS  PubMed  Google Scholar 

  27. Kumar A, Kumari A, Sharma G, Du B, Naushad M, Stadler FJ (2020) Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol. J Mol Liq 300:112356

    Article  CAS  Google Scholar 

  28. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    Article  CAS  PubMed  Google Scholar 

  29. Tay Q, Kanhere P, Ng CF, Chen S, Chakraborty S, Huan ACH, Sum TC, Ahuja R, Chen Z (2015) Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem Mater 27(14):4930–4933

    Article  CAS  Google Scholar 

  30. Li H, Wang HB, Guo JQ, Ye S, Shi WL, Peng X, Song J, Qu JL (2020) Long-wavelength excitation of carbon dots as the probe for real-time imaging of the living-cell cycle process. Sensor Actuat B-Chem 311:127891

    Article  CAS  Google Scholar 

  31. Liu CY, Huang HW, Cui W, Dong F, Zhang YH (2018) Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl Catal B-Environ 230:115–124

    Article  CAS  Google Scholar 

  32. Ansari MS, Banik A, Qureshi M (2017) Morphological tuning of photo-booster g-C3N4 with higher surface area and better charge transfers for enhanced power conversion efficiency of quantum dot sensitized solar cells. Carbon. 121:90–105

    Article  CAS  Google Scholar 

  33. Zeng DQ, Zhou T, Ong WJ, Wu MD, Duan XG, Xu WJ, Chen YZ, Zhu YA, Peng DL (2019) Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 11(6):5651–5660

    Article  CAS  PubMed  Google Scholar 

  34. Shi WL, Wang JB, Yang S, Lin X, Guo F, Shi JY (2020) Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production. J Chem Technol Biotechnol 95(8):2129–2138

    Article  CAS  Google Scholar 

  35. Handoko AD, Steinmann SN, Seh ZW (2019) Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz 4(4):809–827

    Article  CAS  Google Scholar 

  36. Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang JW, Anasori B, Seh ZW (2020) Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14(9):10834–10864

    Article  CAS  PubMed  Google Scholar 

  37. Cai T, Wang LL, Liu YT, Zhang SQ, Dong WY, Chen H, Yi XY, Yuan JL, Xia XN, Liu CB, Luo SL (2018) Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B-Environ 239:545–554

    Article  CAS  Google Scholar 

  38. Handoko AD, Fredrickson KD, Anasori B, Convey KW, Johnson LR, Gogotsi Y, Vojvodic A, Seh ZW (2018) Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. Acs Appl Energ Mater 1(1):173–180

    Article  CAS  Google Scholar 

  39. Kadirsoy S, Atar N, Yola ML (2020) Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem 44(16):6524–6532

    Article  CAS  Google Scholar 

  40. Ozcan N, Medetalibeyoglu H, Akyildirim O, Atar N, Yola ML (2020) Electrochemical detection of amyloid-beta protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater Today Commun 23:101097

    Article  CAS  Google Scholar 

  41. Huang F, Hou J, Wang HG, Tang H, Liu ZY, Zhang LS, Zhang QF, Peng SL, Liu JS, Cao GZ (2017) Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32:433–440

    Article  CAS  Google Scholar 

  42. Kalisman P, Nakibli Y, Amirav L (2016) Perfect photon-to-hydrogen conversion efficiency. Nano Lett 16(3):1776–1781

    Article  CAS  PubMed  Google Scholar 

  43. Peng SQ, An R, Li YX, Lu GX, Li SB (2012) Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Int J Hydrog Energ 37(2):1366–1374

    Article  CAS  Google Scholar 

  44. Yola ML, Atar N, Qureshi MS, Ustundag Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sensor Actuat B-Chem 171:1207–1215

    Article  Google Scholar 

  45. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 516(7529):78–U171

    Article  CAS  PubMed  Google Scholar 

  46. Yu P, Cao GJ, Yi S, Zhang X, Li C, Sun XZ, Wang K, Ma YW (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 10(13):5906–5913

    Article  CAS  PubMed  Google Scholar 

  47. Yola ML (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Microchim Acta 188(3):78

    Article  CAS  Google Scholar 

  48. Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6(22):20085–20092

    Article  CAS  PubMed  Google Scholar 

  49. Medetalibeyoglu H, Beytur M, Akyildirim O, Atar N, Yola ML (2020) Validated electrochemical immunosensor for ultra -sensitive procalcitonin detection: carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sensor Actuat B-Chem 319:128195

    Article  CAS  Google Scholar 

  50. Li ZY, Wang LB, Sun DD, Zhang YD, Liu BZ, Hu QK, Zhou AG (2015) Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B-Adv 191:33–40

    Article  CAS  Google Scholar 

  51. Low JX, Zhang LY, Tong T, Shen BJ, Yu JG (2018) TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 361:255–266

    Article  CAS  Google Scholar 

  52. Cao SW, Shen BJ, Tong T, Fu JW, Yu JG (2018) 2D/2D Heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater 28(21):1800136

    Article  Google Scholar 

  53. Yu TP, Lv ZH, Wang KH, Sun KL, Liu X, Wang GX, Jiang LH, Xie GW (2019) Constructing SrTiO3-T/CdZnS heterostructure with tunable oxygen vacancies for solar-light-driven photocatalytic hydrogen evolution. J Power Sources 438:227014

    Article  CAS  Google Scholar 

  54. Jiang JP, Li SB, Hu SJ, Zhang J, Yu WB, Zhou Y (2020) Comparison of high Cr white iron composites reinforced with directly added TiC and in situ formed TiCx. J Mater Res Technol 9(3):3140–3148

    Article  CAS  Google Scholar 

  55. Meng FT, Umair MM, Iqbal K, Jin X, Zhang SF, Tang BT (2019) Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Appl Mater Interfaces 11(13):13022–13028

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Sun YM, Wu Y, Tu WG, Wu SY, Yuan XZ, Zeng GM, Xu ZCJ, Li SZ, Chew JW (2019) Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl Catal B-Environ 245:290–301

    Article  CAS  Google Scholar 

  57. Ning XF, Zhen WL, Wu YQ, Lu GX (2018) Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Appl Catal B-Environ 226:373–383

    Article  CAS  Google Scholar 

  58. Dai DS, Wang L, Xiao N, Li SS, Xu H, Liu S, Xu BR, Lv D, Gao YQ, Song WY, Ge L, Liu J (2018) In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high quantum-yield photocatalytic hydrogen production under visible light irradiation. Appl Catal B-Environ 233:194–201

    Article  CAS  Google Scholar 

  59. Yuan YJ, Shen ZK, Wu ST, Su YB, Pei L, Ji ZG, Ding MY, Bai WF, Chen YF, Yu ZT, Zou ZG (2019) Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H-2 production activity. Appl Catal B-Environ 246:120–128

    Article  CAS  Google Scholar 

  60. Li YB, Zhang HM, Liu PR, Wang D, Li Y, Zhao HJ (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small. 9(19):3336–3344

    CAS  PubMed  Google Scholar 

  61. Zhu C, Liu CG, Zhou YJ, Fu YJ, Guo SJ, Li H, Zhao SQ, Huang H, Liu Y, Kang ZH (2017) Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl Catal B-Environ 216:114–121

    Article  CAS  Google Scholar 

  62. Zhu C, Liu CA, Fu YJ, Gao J, Huang H, Liu Y, Kang ZH (2019) Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl Catal B-Environ 242:178–185

    Article  CAS  Google Scholar 

  63. Hong ZH, Shen BA, Chen YL, Lin BZ, Gao BF (2013) Enhancement of photocatalytic H-2 evolution over nitrogen-deficient graphitic carbon nitride. J Mater Chem A 1(38):11754–11761

    Article  CAS  Google Scholar 

  64. Chai YY, Liu QQ, Zhang L, Ren J, Dai WL (2017) Structure engineered g-C3N4 nano-sheets by switching the pyrolysis gas atmosphere for enhanced photo-catalytic degradation. Chin J Chem 35(2):173–182

    Article  CAS  Google Scholar 

  65. Tang H, Chang SF, Jiang LY, Tang GG, Liang W (2016) Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceram Int 42(16):18443–18452

    Article  CAS  Google Scholar 

  66. Li Y, Feng XH, Lu ZX, Yin H, Liu F, Xiang QJ (2018) Enhanced photocatalytic H-2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites. J Colloid Interface Sci 513:866–876

    Article  CAS  PubMed  Google Scholar 

  67. Yang YM, Liu NY, Qiao S, Liu RH, Huang H, Liu Y (2015) Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane. New J Chem 39(4):2815–2821

    Article  CAS  Google Scholar 

  68. Chang F, Zhang J, Xie YC, Chen J, Li CL, Wang J, Luo JR, Deng BQ, Hu XF (2014) Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4-TiO2 hybrids. Appl Surf Sci 311:574–581

    Article  CAS  Google Scholar 

  69. Yao W, Wang XX, Liang Y, Yu SJ, Gu PC, Sun YB, Xu C, Chen J, Hayat T, Alsaedi A, Wang XK (2018) Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U (VI) and Am-241(III) efficient removal: Batch and EXAFS studies. Chem Eng J 332:775–786

    Article  CAS  Google Scholar 

  70. Tambara K, Fujita M, Miyamoto S, Doi K, Nishimura K, Komeda M (2004) Pericardial fluid level of heart-type cytoplasmic fatty acid-binding protein (H-FABP) is an indicator of severe myocardial ischemia. Int J Cardiol 93(2–3):281–284

    Article  PubMed  Google Scholar 

  71. Carless DR, Wnek M, Knox C, Harrison KR, Calder N, Hall AS, Barth JH (2013) Clinical and analytical evaluation of an immunoturbidimetric heart-type fatty acid-binding protein assay. Scand J Clin Lab Invest 73(1):48–53

    Article  CAS  PubMed  Google Scholar 

  72. Yang TT, Ren XN, Yang M, Li X, He KK, Rao A, Wan Y, Yang H, Wang SQ, Luo ZQ (2019) A highly sensitive label-free electrochemical immunosensor based on poly (indole-5-carboxylicacid) with ultra-high redox stability. Biosens Bioelectron 141:111406

    Article  CAS  PubMed  Google Scholar 

  73. Crapnell RD, Canfarotta F, Czulak J, Johnson R, Betlem K, Mecozzi F, Down MP, Eersels K, van Grinsven B, Cleij TJ, Law R, Banks CE, Peeters M (2019) Thermal detection of cardiac biomarkers heart-fatty acid binding protein and ST2 using a molecularly imprinted nanoparticle-based multiplex sensor platform. Acs Sensors 4(10):2838–2845

    Article  CAS  PubMed  Google Scholar 

  74. Li F, Guo L, Hu YT, Li ZM, Liu JC, He JB, Cui H (2020) Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta. 207:120346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mehmet Lütfi YOLA would like to thank the Turkish Academy of Sciences for their invaluable support in respect to The Young Scientists Award Programme, TÜBA-GEBIP (2019). The study was partially supported by this award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Lütfi Yola.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, C., Karaman, O., Atar, N. et al. Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188, 182 (2021). https://doi.org/10.1007/s00604-021-04838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04838-6

Keywords

Navigation