Skip to main content
Log in

Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) are a rising star in the field of cellular imaging, especially cytoplasmic imaging, attributing to the super-stable optical performance and ultra-low biological toxicity. Nucleolus can accurately reflect the expression state of a cell and is strongly linked to the occurrence and development of many diseases, so exploring bran-new CDs for nucleolus-orientation imaging with no-wash technology has important theoretical value and practical significance. Herein, nitrogen-doped carbon dots (N-CDs) with green fluorescence (the relative fluorescence quantum yield of 24.4%) was fabricated by the hydrothermal treatment of m-phenylenediamine and p-aminobenzoic acid. The N-CDs possess small size, bright green fluorescence, abundant surface functional groups, excellent fluorescence stability and good biocompatibility, facilitating that the N-CDs are an excellent imaging reagent for cellular imaging. N-CDs can particularly bind to RNA in nucleoli to enhance their fluorescence, which ensures that the N-CDs can be used in nucleolus-orientation imaging with high specificity and wash-free technique. This study demonstrates that the N-CDs have a significant feasibility to be used for nucleolus-orientation imaging in biomedical analysis and clinical diagnostic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang X, Wang Y, He H, Ma X, Chen Q, Zhang S, Ge B, Wang S, Nau WM, Huang F (2017) Deep-red fluorescent gold nanoclusters for nucleoli staining: real-time monitoring of the nucleolar dynamics in reverse transformation of malignant cells. ACS Appl Mater Interfaces 9(21):17799–17806. https://doi.org/10.1021/acsami.7b04576

    Article  CAS  PubMed  Google Scholar 

  2. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896. https://doi.org/10.1126/science.1060089

    Article  CAS  PubMed  Google Scholar 

  3. Hua XW, Bao YW, Wu FG (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10(13):10664–10677. https://doi.org/10.1021/acsami.7b19549

    Article  CAS  PubMed  Google Scholar 

  4. Kelemen PR, Buschmann RJ, Weisz-carrington P (1990) Nucleolar prominence as a diagnostic variable in prostatic carcinoma. Cancer 65:1017–1020. https://doi.org/10.1002/10970142(19900215)65:43.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  5. Croissant J, Zink JI (2012) Nanovalve-controlled cargo release activated by plasmonic heating. J Am Chem Soc 134(18):7628–7631. https://doi.org/10.1021/ja301880x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saini AK, Sharma V, Mathur P, Shaikh MM (2016) The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining. Sci Rep 6:34807. https://doi.org/10.1038/srep34807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayank RR, Singh A, Garg N, Kaur N, Singh N (2019) Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst 145(1):83–90. https://doi.org/10.1039/c9an01513b

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Zhang S, Zhu J, Liu X, Yang G, Zhang X (2019) A triarylboron-based binuclear Zn(II) complex as a two-photon fluorescent probe for simultaneous multicolor imaging of the cell membrane, endoplasmic reticulum, and nucleolus. Anal Bioanal Chem 411(20):5223–5231. https://doi.org/10.1007/s00216-019-01896-x

    Article  CAS  PubMed  Google Scholar 

  9. Zhou B, Liu W, Zhang H, Wu J, Liu S, Xu H, Wang P (2015) Imaging of nucleolar RNA in living cells using a highly photostable deep-red fluorescent probe. Biosens Bioelectron 68:189–196. https://doi.org/10.1016/j.bios.2014.12.055

    Article  CAS  PubMed  Google Scholar 

  10. Shen R, Shen X, Zhang Z, Li Y, Liu S, Liu H (2010) Multifunctional conjugates to prepare nucleolar-targeting CdS quantum dots. J Am Chem Soc 132:8627–8634. https://doi.org/10.1021/ja1002668

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Wang Y, He H, Chen X, Sun X, Sun Y, Zhou G, Xu H, Huang F (2016) Steering graphene quantum dots in living cells: lighting up the nucleolus. J Mater Chem B 4(4):779–784. https://doi.org/10.1039/c5tb02474a

    Article  CAS  PubMed  Google Scholar 

  12. Gong X, Li Z, Hu Q, Zhou R, Shuang S, Dong C (2017) N,S,P co-doped carbon nanodot fabricated from waste microorganism and its application for label-free recognition of Manganese(VII) and L-ascorbic acid and AND logic gate operation. ACS Appl Mater Interfaces 9 (44): 38761–38772. https://doi.org/10.1021/acsami.7b11170, N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese(VII) andl-Ascorbic Acid and AND Logic Gate Operation

  13. Gong X, Lu W, Paau MC, Hu Q, Wu X, Shuang S, Dong C, Choi MM (2015) Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal Chim Acta 861:74–84. https://doi.org/10.1016/j.aca.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  14. Zheng M, Liu S, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z (2014) Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv Mater 26(21):3554–3560. https://doi.org/10.1002/adma.201306192

    Article  CAS  PubMed  Google Scholar 

  15. Gong X, Zhang Q, Gao Y, Shuang S, Choi MM, Dong C (2016) Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces 8(18):11288–11297. https://doi.org/10.1021/acsami.6b01577

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Wei JS, Zhang P, Niu XQ, Zhao W, Zhu ZY, Ding H, Xiong HM (2017) Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process. ACS Appl Mater Interfaces 9(22):18429–18433. https://doi.org/10.1021/acsami.7b03917

    Article  CAS  PubMed  Google Scholar 

  17. Shao J, Zhu S, Liu H, Song Y, Tao S, Yang B (2017) Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Adv Sci 4(12):1700395. https://doi.org/10.1002/advs.201700395

    Article  CAS  Google Scholar 

  18. Su R, Wang D, Liu M, Yan J, Wang JX, Zhan Q, Pu Y, Foster NR, Chen JF (2018) Subgram-scale synthesis of biomass waste-derived fluorescent carbon dots in subcritical water for bioimaging, sensing, and solid-state patterning. ACS Omega 3(10):13211–13218. https://doi.org/10.1021/acsomega.8b01919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  PubMed  Google Scholar 

  20. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  21. Luo P, Yang F, Yang S-T, Sonkar SK, Yang L, Broglie JJ, Liu Y, Sun Y-P (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4:10791. https://doi.org/10.1039/c3ra47683a

    Article  CAS  Google Scholar 

  22. Borse V, Thakur M, Sengupta S, Srivastava R (2017) N-doped multi-fluorescent carbon dots for ‘turn off-on’ silver-biothiol dual sensing and mammalian cell imaging application. Sensor Actuat B-Chem 248:481–492. https://doi.org/10.1016/j.snb.2017.03.158

    Article  CAS  Google Scholar 

  23. Yang W, Zhang H, Lai J, Peng X, Hu Y, Gu W, Ye L (2018) Carbon dots with red-shifted photoluminescence by fluorine doping for optical bio-imaging. Carbon 128:78–85. https://doi.org/10.1016/j.carbon.2017.11.069

    Article  CAS  Google Scholar 

  24. Liu H, Yang J, Li Z, Xiao L, Aryee AA, Sun Y, Yang R, Meng H, Qu L, Lin Y, Zhang X (2019) Hydrogen-bond-induced emission of carbon dots for wash-free nucleus imaging. Anal Chem 91(14):9259–9265. https://doi.org/10.1021/acs.analchem.9b02147

    Article  CAS  PubMed  Google Scholar 

  25. Pang W, Jiang P, Ding S, Bao Z, Wang N, Wang H, Qu J, Wang D, Gu B, Wei X (2020) Nucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dots. Adv Healthc Mater 9(16):e2000607. https://doi.org/10.1002/adhm.202000607

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Ye S, Guo J, Wang H, Yan W, Song J, Qu J (2019) Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res 12(12):3075–3084. https://doi.org/10.1007/s12274-019-2554-x

    Article  CAS  Google Scholar 

  27. Li H, Zhang M, Song Y, Wang H, Liu C, Fu Y, Huang H, Liu Y, Kang Z (2018) Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J Mater Chem B 6(36):5708–5717. https://doi.org/10.1039/c8tb01751d

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Z, Li Q, Li P, Xun X, Zheng L, Ning D, Su M (2019) Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS One 14(5):e0216230. https://doi.org/10.1371/journal.pone.0216230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He H, Wang Z, Cheng T, Liu X, Wang X, Wang J, Ren H, Sun Y, Song Y, Yang J, Xia Y, Wang S, Zhang X, Huang F (2016) Visible and near-infrared dual-emission carbogenic small molecular complex with high RNA selectivity and renal clearance for nucleolus and tumor imaging. ACS Appl Mater Interfaces 8(42):28529–28537. https://doi.org/10.1021/acsami.6b10737

    Article  CAS  PubMed  Google Scholar 

  30. Yin X, Sun Y, Yang R, Qu L, Li Z (2020) RNA-responsive fluorescent carbon dots for fast and wash-free nucleolus imaging. Spectrochim Acta A 237:1183. https://doi.org/10.1016/j.saa.2020.118381

    Article  CAS  Google Scholar 

  31. Zhang B, Duan Q, Zhao H, Zhang Y, Li X, Xi Y, Wu Z, Guo L, Li P, Sang S (2021) Application of carbon dots in nucleolus imaging to distinguish cancerous cells from normal cells. Sensor Actuat B-Chem 329(15):129156–129164. https://doi.org/10.1016/j.snb.2020.129156

    Article  CAS  Google Scholar 

  32. Kong W, Liu R, Li H, Liu J, Huang H, Liu Y, Kang Z (2014) High-bright fluorescent carbon dots and their application in selective nucleoli staining. J Mater Chem B 2(31):5077–5082. https://doi.org/10.1039/c4tb00579a

    Article  CAS  PubMed  Google Scholar 

  33. Hua XW, Bao YW, Zeng J, Wu FG (2019) Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: high-resolution cell imaging and in vivo tracking. ACS Appl Mater Interfaces 11(36):32647–32658. https://doi.org/10.1021/acsami.9b09590

    Article  CAS  PubMed  Google Scholar 

  34. Gong X, Lu W, Liu Y, Li Z, Shuang S, Dong C, Choi MMF (2015) Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J Mater Chem B 3(33):6813–6819. https://doi.org/10.1039/c5tb00575b

    Article  CAS  PubMed  Google Scholar 

  35. Gong X, Zhang L, Liu Y, Wang H, Cui X, Hu Q, Song S, Shuang S, Dong C (2019) Controllable fabrication, photoluminescence mechanism, and novel application of green–yellow–orange fluorescent carbon-based nanodots. ACS Biomater Sci Eng 5(10):5060–5071. https://doi.org/10.1021/acsbiomaterials.9b01153

    Article  CAS  PubMed  Google Scholar 

  36. Jia Q, Zheng X, Ge J, Liu W, Ren H, Chen S, Wen Y, Zhang H, Wu J, Wang P (2018) Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J Colloid Interf Sci 526:302–311. https://doi.org/10.1016/j.jcis.2018.05.005

    Article  CAS  Google Scholar 

  37. Li W, Zhang H, Zheng Y, Chen S, Liu Y, Zhuang J, Liu WR, Lei B (2017) Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging. Nanoscale 9(35):12976–12983. https://doi.org/10.1039/c7nr03217j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21705101), Shanxi Provincial Key Research and Development Project (201903D121109) and Natural Science Foundation of Shanxi Province (No. 201801D121040 and 201901D211154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan Dong or Xiaojuan Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanomaterials for biomedical imaging and targeting

Supplementary Information

ESM 1

(DOCX 4981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Z., Wang, H. et al. Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Microchim Acta 188, 183 (2021). https://doi.org/10.1007/s00604-021-04837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04837-7

Keywords

Navigation