Skip to main content
Log in

Zeolite-iron oxide nanocomposite from fly ash formed a ‘clubbell’ structure: integration of cardiac biocapture macromolecules in serum on microelectrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100–200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1–2 pg/mL (0.1–0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1–3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x–0.5771. Without  sandwich, the detection limit was 2–4 pg/mL (0.2–0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x–1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical aptasensor of cardiac troponin i for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875. https://doi.org/10.1021/acs.analchem.5b02312

    Article  CAS  PubMed  Google Scholar 

  2. Sinha A, Gopinathan P, Da Chung Y et al (2019) Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system. Lab Chip 19:1676–1685. https://doi.org/10.1039/c9lc00115h

    Article  CAS  PubMed  Google Scholar 

  3. Luchner A, Hengstenberg C, Löwel H et al (2002) N-terminal pro-brain natriuretic peptide after myocardial infarction a marker of cardio-renal function. Hypertension 39:99–104. https://doi.org/10.1161/hy0102.100537

    Article  CAS  PubMed  Google Scholar 

  4. Zhou W, Jimmy Huang PJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640

    Article  CAS  Google Scholar 

  5. Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K, Horiguchi Y, Nagasaki Y (2013) A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 138:2863–2870. https://doi.org/10.1039/c3an00298e

    Article  CAS  PubMed  Google Scholar 

  6. Gopinath SCB (2008) Anti-coagulant aptamers. Thromb Res 122:838–847. https://doi.org/10.1016/j.thromres.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  7. Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K (2013) Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 29:15107–15115. https://doi.org/10.1021/la4027283

    Article  CAS  PubMed  Google Scholar 

  8. Ramanathan S, Gopinath SCB, Arshad MK, Poopalan P (2019) Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: comprehensive assessment on current diagnostics. Biosens Bioelectron 141:111434. https://doi.org/10.1016/j.bios.2019.111434

    Article  CAS  PubMed  Google Scholar 

  9. Soldatkina OV, Kucherenko IS, Soldatkin OO, Pyeshkova VM, Dudchenko OY, Akata Kurç B, Dzyadevych SV (2019) Development of electrochemical biosensors with various types of zeolites. Appl Nanosci 9:737–747. https://doi.org/10.1007/s13204-018-0725-9

    Article  CAS  Google Scholar 

  10. Soldatkin OO, Shelyakina MK, Arkhypova VN, Soy E, Kirdeciler SK, Ozansoy Kasap B, Lagarde F, Jaffrezic-Renault N, Akata Kurç B, Soldatkin AP, Dzyadevych SV (2015) Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation. Nanoscale Res Lett 10:59. https://doi.org/10.1186/s11671-015-0768-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozansoy Kasap B, Marchenko SV, Soldatkin OO, Dzyadevych SV, Akata Kurc B (2017) Biosensors based on nano-gold/zeolite-modified ion selective field-effect transistors for creatinine detection. Nanoscale Res Lett 12:162. https://doi.org/10.1186/s11671-017-1943-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anu Prathap MU, Kaur B, Srivastava R (2019) Electrochemical sensor platforms based on nanostructured metal oxides, and zeolite-based materials. Chem Rec 19:883–907. https://doi.org/10.1002/tcr.201800068

    Article  CAS  PubMed  Google Scholar 

  13. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC - Trends Anal Chem 72:1–9

    Article  CAS  Google Scholar 

  14. Clara Jeyageetha J, Gayathri M, Jeyapratha J (2020) Separation of iron oxide nanoparticles from fly ash of thermal power plant and its characterization. Int J Sci Technol Res 9:1179–1183

    Google Scholar 

  15. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A Physicochem Eng Asp 413:273–279. https://doi.org/10.1016/j.colsurfa.2011.11.033

    Article  CAS  Google Scholar 

  16. Lakshmipriya T, Gopinath SCB, Tang T-H (2016) Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked Immunosorbent assay. PLoS One 11:e0151153. https://doi.org/10.1371/journal.pone.0151153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, Lee CG (2020) Alkalinized extraction of silica-aluminium nanocomposite from traditional Chinese joss paper: optical characterizations. Mater Chem Phys 243:122621. https://doi.org/10.1016/j.matchemphys.2020.122621

    Article  CAS  Google Scholar 

  18. Reddy GR, Balasubramanian S, Chennakesavulu K (2015) Zeolite encapsulated active metal composites and their photocatalytic studies for rhodamine-B, reactive red-198 and chloro-phenols. RSC Adv 5:81013. https://doi.org/10.1039/c5ra13034d

    Article  CAS  Google Scholar 

  19. Yue Y, Liu H, Yuan P, Yu C, Bao X (2015) One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Sci Rep 5:9270. https://doi.org/10.1038/srep09270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, Ogale S, Szunerits S (2018) Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 3:12010–12018. https://doi.org/10.1021/acsomega.8b01558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghedir E, Baraket A, Kouchar S, Rabai S, Benounis M, Alcacer A, Streklas A, Bausells J, Zine N, Jaffrezic N, Errachid A (2018) Electrochemical imunosensor for NT-proBNP detection in artificial human saliva: heart failure biomedical application. Proceedings 2:1085. https://doi.org/10.3390/proceedings2131085

    Article  Google Scholar 

  22. Pollok NE, Rabin C, Walgama CT, Smith L, Richards I, Crooks RM (2020) Electrochemical detection of NT-proBNP using a metalloimmunoassay on a paper electrode platform. ACS Sensors 5:853–860. https://doi.org/10.1021/acssensors.0c00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo B, Wu S, Zhang Z, Zou W, Shi S, Zhao M, Zhong N, Liu Y, Zou X, Wang L, Chai W, Hu C, Zhang L (2017) Human heart failure biomarker immunosensor based on excessively tilted fiber gratings. Biomed Opt Express 8:57–67. https://doi.org/10.1364/boe.8.000057

    Article  CAS  PubMed  Google Scholar 

  24. Shanmugam NR, Muthukumar S, Tanak AS, Prasad S (2018) Multiplexed electrochemical detection of three cardiac biomarkers cTnI, cTnT and BNP using nanostructured ZnO-sensing platform. Futur Cardiol 14:131–141. https://doi.org/10.2217/fca-2017-0074

    Article  CAS  Google Scholar 

  25. Hartati YW, Nurmalasari R, Gaffar S, Subroto T (2017) B-type natriuretic peptide (BNP) detection using electrochemical immunosensor based on Sandwich ELISA with horseradish peroxidase-tetramethylbenzidine system. Proc Technol 27:149–150. https://doi.org/10.1016/j.protcy.2017.04.065

    Article  Google Scholar 

  26. Sinawang PD, Harpaz D, Fajs L et al (2017) Electrochemical impedimetric detection of stroke biomarker NT-proBNP using disposable screen-printed gold electrodes. EuroBiotech J 1:165. https://doi.org/10.24190/issn2564-615x/2017/02.09

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Gopinath, S.C.B., Wang, Z. et al. Zeolite-iron oxide nanocomposite from fly ash formed a ‘clubbell’ structure: integration of cardiac biocapture macromolecules in serum on microelectrodes. Microchim Acta 188, 187 (2021). https://doi.org/10.1007/s00604-021-04834-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04834-w

Keywords

Navigation