Skip to main content

Advertisement

Log in

State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang Q, Xu Q, Jiang HL (2017) Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46(15):4774–4808. https://doi.org/10.1039/c6cs00724d

    Article  CAS  PubMed  Google Scholar 

  2. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe F, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  3. Wang B, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453(7192):207–211. https://doi.org/10.1038/nature06900

    Article  CAS  PubMed  Google Scholar 

  4. Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, Chang JS, Jhung SH, Ferey G (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed Engl 45(48):8227–8231. https://doi.org/10.1002/anie.200600105

    Article  CAS  PubMed  Google Scholar 

  5. Ma S, Sun D, Simmons JM, Collier CD, Yuan DQ, Zhou HC (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016. https://doi.org/10.1021/ja0771639

    Article  CAS  PubMed  Google Scholar 

  6. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  7. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang HL (2019) Metal-organic frameworks: structures and functional applications. Mater Today 27:43–68. https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  8. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866. https://doi.org/10.1039/c5ee00762c

    Article  CAS  Google Scholar 

  9. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres IXFX, Gascon J (2015) Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(1):48–55. https://doi.org/10.1038/nmat4113

    Article  CAS  PubMed  Google Scholar 

  10. Huang YB, Liang J, Wang XS, Cao R (2017) Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46(1):126–157. https://doi.org/10.1039/c6cs00250a

    Article  CAS  PubMed  Google Scholar 

  11. Zhang K, Meng X, Cao Y, Yang Z, Dong H, Zhang Y, Lu H, Shi Z, Zhang X (2018) Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv Funct Mater 28(42). https://doi.org/10.1002/adfm.201804634

  12. Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S (2018) One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem Commun 54(42):5377–5380. https://doi.org/10.1039/c8cc02708k

    Article  CAS  Google Scholar 

  13. Lian X, Huang Y, Zhu Y, Fang Y, Zhao R, Joseph E, Li J, Pellois JP, Zhou HC (2018) Enzyme-MOF nanoreactor activates nontoxic paracetamol for cancer therapy. Angew Chem Int Ed Engl 57(20):5725–5730. https://doi.org/10.1002/anie.201801378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui Y, Song R, Yu J, Liu M, Wang Z, Wu C, Yang Y, Wang Z, Chen B, Qian G (2015) Dual-emitting MOF supersetdye composite for ratiometric temperature sensing. Adv Mater 27(8):1420–1425. https://doi.org/10.1002/adma.201404700

    Article  CAS  PubMed  Google Scholar 

  15. Ma K, Wang H, Li H, Xu B, Tian W (2017) Label-free detection for SNP using AIE probes and carbon nanotubes. Sensors Actuators B Chem 253:92–96. https://doi.org/10.1016/j.snb.2017.06.055

    Article  CAS  Google Scholar 

  16. Ou X, Zhan S, Sun C, Cheng Y, Wang X, Liu B, Zhai T, Lou X, Xia F (2019) Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosens Bioelectron 124-125:199–204. https://doi.org/10.1016/j.bios.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Vedova PD, Ilieva M, Zhurbenko V, Mateiu R, Faralli A, Dufva M, Hansen O (2015) Gold nanoparticle-based sensors activated by external radio frequency fields. Small 11(2):248–256. https://doi.org/10.1002/smll.201401187

    Article  CAS  PubMed  Google Scholar 

  18. Bhatnagar D, Kumar V, Kumar A, Kaur I (2016) Graphene quantum dots FRET based sensor for early detection of heart attack in human. Biosens Bioelectron 79:495–499. https://doi.org/10.1016/j.bios.2015.12.083

    Article  CAS  PubMed  Google Scholar 

  19. Jesu Raj JG, Quintanilla M, Mahmoud KA, Ng A, Vetrone F, Zourob M (2015) Sensitive detection of ssDNA using an LRET-based upconverting nanohybrid material. ACS Appl Mater Interfaces 7(33):18257–18265. https://doi.org/10.1021/acsami.5b02986

    Article  CAS  PubMed  Google Scholar 

  20. Liu S, Bai J, Huo Y, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z (2020) A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 149:149. https://doi.org/10.1016/j.bios.2019.111801

    Article  CAS  Google Scholar 

  21. Zhang Q, Wang CF, Lv YK (2018) Luminescent switch sensors for the detection of biomolecules based on metal-organic frameworks. Analyst 143(18):4221–4229. https://doi.org/10.1039/c8an00816g

    Article  CAS  PubMed  Google Scholar 

  22. Jeong Y, Kook YM, Lee K, Koh WG (2018) Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments. Biosens Bioelectron 111:102–116. https://doi.org/10.1016/j.bios.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  23. Akkilic N, Geschwindner S, Hook F (2020) Single-molecule biosensors: recent advances and applications. Biosens Bioelectron 151:111944. https://doi.org/10.1016/j.bios.2019.111944

    Article  CAS  PubMed  Google Scholar 

  24. Hermann T (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825. https://doi.org/10.1126/science.287.5454.820

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I (2013) Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc 135(32):11832–11839. https://doi.org/10.1021/ja403485r

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Fu Y, Kang Z, Liu X, Chen N, Wang Q, Tu Y, Wang L, Song S, Ling D, Song H, Kong X, Fan C (2017) Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J Am Chem Soc 139(44):15784–15791. https://doi.org/10.1021/jacs.7b07895

    Article  CAS  PubMed  Google Scholar 

  27. Tian J, Liu Q, Shi J, Hu J, Asiri AM, Sun X, He Y (2015) Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: synergies of the metal center and organic linker. Biosens Bioelectron 71:1–6. https://doi.org/10.1016/j.bios.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Yuan S, Qin JS, Pang J, Zhang P, Zhang Y, Huang Y, Drake HF, Liu WR, Zhou HC (2020) Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection. Angew Chem Int Ed Engl 59(24):9319–9323. https://doi.org/10.1002/anie.202000702

    Article  CAS  PubMed  Google Scholar 

  29. Evale BG, Hanagodimath SM (2010) Static and dynamic quenching of biologically active coumarin derivative by aniline in benzene-acetonitrile mixtures. J Lumin 130(8):1330–1337. https://doi.org/10.1016/j.jlumin.2010.03.011

    Article  CAS  Google Scholar 

  30. Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M (2012) Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl Microbiol Biotechnol 96(4):895–902. https://doi.org/10.1007/s00253-012-4449-6

    Article  CAS  PubMed  Google Scholar 

  31. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40(7):3483–3495. https://doi.org/10.1039/c0cs00224k

    Article  CAS  PubMed  Google Scholar 

  32. Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840. https://doi.org/10.1039/c4cs00010b

    Article  CAS  PubMed  Google Scholar 

  33. Ma H, He C, Li X, Ablikim O, Zhang S, Zhang M (2016) A fluorescent probe for TNP detection in aqueous solution based on joint properties of intramolecular charge transfer and aggregation-induced enhanced emission. Sensors Actuators B Chem 230:746–752. https://doi.org/10.1016/j.snb.2016.02.112

    Article  CAS  Google Scholar 

  34. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  35. Wu Y, Han J, Xue P, Xu R, Kang Y (2015) Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7(5):1753–1759. https://doi.org/10.1039/c4nr05447d

    Article  CAS  PubMed  Google Scholar 

  36. Zhang HT, Zhang JW, Huang G, Du ZY, Jiang HL (2014) An amine-functionalized metal-organic framework as a sensing platform for DNA detection. Chem Commun 50(81):12069–12072. https://doi.org/10.1039/c4cc05571c

    Article  CAS  Google Scholar 

  37. Xu P, Liao G (2018) A novel fluorescent biosensor for adenosine triphosphate detection based on a metal(-)organic framework coating polydopamine layer. Materials 11(9). https://doi.org/10.3390/ma11091616

  38. Tan H, Tang G, Wang Z, Li Q, Gao J, Wu S (2016) Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection. Anal Chim Acta 940:136–142. https://doi.org/10.1016/j.aca.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  39. He J, Li G, Hu Y (2017) Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: highly selective and sensitive determination of thrombin and oxytetracycline. Microchim Acta 184(7):2365–2373. https://doi.org/10.1007/s00604-017-2263-7

    Article  CAS  Google Scholar 

  40. Pan Y, Zhan S, Xia F (2018) Zeolitic imidazolate framework-based biosensor for detection of HIV-1 DNA. Anal Biochem 546:5–9. https://doi.org/10.1016/j.ab.2018.01.017

    Article  CAS  PubMed  Google Scholar 

  41. Huang X, He Z, Guo D, Liu Y, Song J, Yung BC, Lin L, Yu G, Zhu JJ, Xiong Y, Chen X (2018) “Three-in-one” nanohybrids as synergistic nanoquenchers to enhance no-wash fluorescence biosensors for ratiometric detection of cancer biomarkers. Theranostics 8(13):3461–3473. https://doi.org/10.7150/thno.25179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie BP, Qiu GH, Hu PP, Liang Z, Liang YM, Sun B, Bai LP, Jiang ZH, Chen JX (2018) Simultaneous detection of dengue and zika virus RNA sequences with a three-dimensional Cu-based zwitterionic metal-organic framework, comparison of single and synchronous fluorescence analysis. Sensors Actuators B Chem 254:1133–1140. https://doi.org/10.1016/j.snb.2017.06.085

    Article  CAS  Google Scholar 

  43. Yang W, Zhang G, Weng W, Qiu B, Guo L, Lin Z, Chen G (2014) Signal on fluorescence biosensor for MMP-2 based on FRET between semiconducting polymer dots and a metal organic framework. RSC Adv 4(102):58852–58857. https://doi.org/10.1039/c4ra12478b

    Article  CAS  Google Scholar 

  44. Yang Q, Zhou L, Wu YX, Zhang K, Cao Y, Zhou Y, Wu D, Hu F, Gan N (2018) A two dimensional metal-organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Anal Chim Acta 1020:1–8. https://doi.org/10.1016/j.aca.2018.02.058

    Article  CAS  PubMed  Google Scholar 

  45. Hu S, Ouyang W, Guo L, Lin Z, Jiang X, Qiu B, Chen G (2017) Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens Bioelectron 92:718–723. https://doi.org/10.1016/j.bios.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  46. Song C, Wang GY, Wang YL, Kong DM, Wang YJ, Li Y, Ruan WJ (2014) A barium based coordination polymer for the activity assay of deoxyribonuclease I. Chem Commun 50(76):11177–11180. https://doi.org/10.1039/c4cc04272g

    Article  CAS  Google Scholar 

  47. Yang SP, Zhao W, Hu PP, Wu KY, Jiang ZH, Bai LP, Li MM, Chen JX (2017) Lanthanum-based metal-organic frameworks for specific detection of Sudan virus RNA conservative sequences down to single-base mismatch. Inorg Chem 56(24):14880–14887. https://doi.org/10.1021/acs.inorgchem.7b02107

    Article  CAS  PubMed  Google Scholar 

  48. Wang GY, Song C, Kong DM, Ruan WJ, Chang Z, Li Y (2014) Two luminescent metal-organic frameworks for the sensing of nitroaromatic explosives and DNA strands. J Mater Chem A 2(7):2213–2220. https://doi.org/10.1039/c3ta14199c

    Article  CAS  Google Scholar 

  49. Cordova Wong BJ, Xu DM, Bao SS, Zheng LM, Lei J (2019) Hofmann metal-organic framework monolayer nanosheets as an axial coordination platform for biosensing. ACS Appl Mater Interfaces 11(13):12986–12992. https://doi.org/10.1021/acsami.9b00693

    Article  CAS  PubMed  Google Scholar 

  50. Zhao HQ, Qiu GH, Liang Z, Li MM, Sun B, Qin L, Yang SP, Chen WH, Chen JX (2016) A zinc(II)-based two-dimensional MOF for sensitive and selective sensing of HIV-1 ds-DNA sequences. Anal Chim Acta 922:55–63. https://doi.org/10.1016/j.aca.2016.03.054

    Article  CAS  PubMed  Google Scholar 

  51. Song WJ (2017) Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta 170:74–80. https://doi.org/10.1016/j.talanta.2017.02.040

    Article  CAS  PubMed  Google Scholar 

  52. Zhao HQ, Yang SP, Ding NN, Qin L, Qiu GH, Chen JX, Zhang WH, Chen WH, Hor TS (2016) A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Trans 45(12):5092–5100. https://doi.org/10.1039/c5dt04410c

    Article  CAS  PubMed  Google Scholar 

  53. Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G (2013) Metal-organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49(13):1276–1278. https://doi.org/10.1039/c2cc36661d

    Article  CAS  Google Scholar 

  54. Ye T, Liu Y, Luo M, Xiang X, Ji X, Zhou G, He Z (2014) Metal-organic framework-based molecular beacons for multiplexed DNA detection by synchronous fluorescence analysis. Analyst 139(7):1721–1725. https://doi.org/10.1039/c3an02077k

    Article  CAS  PubMed  Google Scholar 

  55. Chen L, Zheng H, Zhu X, Lin Z, Guo L, Qiu B, Chen G, Chen ZN (2013) Metal-organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA. Analyst 138(12):3490–3493. https://doi.org/10.1039/c3an00426k

    Article  CAS  PubMed  Google Scholar 

  56. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27(45):7372–7378. https://doi.org/10.1002/adma.201503648

    Article  CAS  PubMed  Google Scholar 

  57. Qiu Q, Chen H, Ying S, Sharif S, You Z, Wang Y, Ying Y (2019) Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Mikrochim Acta 186(2):93. https://doi.org/10.1007/s00604-019-3226-y

    Article  CAS  PubMed  Google Scholar 

  58. Xu C, Liu H, Li D, Su JH, Jiang HL (2018) Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer. Chem Sci 9(12):3152–3158. https://doi.org/10.1039/c7sc05296k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL (2015) Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc 137(42):13440–13443. https://doi.org/10.1021/jacs.5b08773

    Article  CAS  PubMed  Google Scholar 

  60. Hao YB, Shao ZS, Cheng C, Xie XY, Zhang J, Song WJ, Wang HS (2019) Regulating fluorescent aptamer-sensing behavior of zeolitic imidazolate framework (ZIF-8) platform via lanthanide ion doping. ACS Appl Mater Interfaces 11:31755–31762. https://doi.org/10.1021/acsami.9b12253

    Article  CAS  PubMed  Google Scholar 

  61. Fang JM, Leng F, Zhao XJ, Hu XL, Li YF (2014) Metal-organic framework MIL-101 as a low background signal platform for label-free DNA detection. Analyst 139(4):801–806. https://doi.org/10.1039/c3an01975f

    Article  CAS  PubMed  Google Scholar 

  62. Qiu GH, Weng ZH, Hu PP, Duan WJ, Xie BP, Sun B, Tang XY, Chen JX (2018) Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework. Talanta 180:396–402. https://doi.org/10.1016/j.talanta.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  63. Qiu GH, Lu WZ, Hu PP, Jiang ZH, Bai LP, Wang TR, Li MM, Chen JX (2017) A metal-organic framework based PCR-free biosensor for the detection of gastric cancer associated microRNAs. J Inorg Biochem 177:138–142. https://doi.org/10.1016/j.jinorgbio.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  64. Wei X, Zheng L, Luo F, Lin Z, Guo L, Qiu B, Chen G (2013) Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform. J Mater Chem B 1(13):1812–1817. https://doi.org/10.1039/c3tb00501a

    Article  CAS  PubMed  Google Scholar 

  65. Wang C, Tang G, Tan H (2018) Pyrophosphate ion-triggered competitive displacement of ssDNA from a metal-organic framework and its application in fluorescent sensing of alkaline phosphatase. J Mater Chem B 6(46):7614–7620. https://doi.org/10.1039/c8tb02175a

    Article  CAS  PubMed  Google Scholar 

  66. Ravikumar A, Panneerselvam P (2019) A novel fluorescent sensing platform based on metal-polydopamine frameworks for the dual detection of kanamycin and oxytetracycline. Analyst 144(7):2337–2344. https://doi.org/10.1039/c8an02363h

    Article  CAS  Google Scholar 

  67. Yang Q, Hong JC, Wu YX, Cao YT, Wu DZ, Hu FT, Gan N (2019) A multicolor fluorescence nanoprobe platform using two-dimensional metal organic framework nanosheets and double stirring bar assisted target replacement for multiple bioanalytical applications. ACS Appl Mater Interfaces 11(44):41506–41515. https://doi.org/10.1021/acsami.9b12475

    Article  CAS  PubMed  Google Scholar 

  68. Ravikumar A, Panneerselvam P, Morad N (2018) Metal-polydopamine framework as an effective fluorescent quencher for highly sensitive detection of Hg(II) and Ag(I) ions through exonuclease III activity. ACS Appl Mater Interfaces 10(24):20550–20558. https://doi.org/10.1021/acsami.8b05041

    Article  CAS  PubMed  Google Scholar 

  69. Marieeswaran M, Panneerselvam P (2020) A magnetic nanoscale metal-organic framework (MNMOF) as a viable fluorescence quencher material for ssDNA and for the detection of mercury ions via a novel quenching-quenching mechanism. RSC Adv 10(7):3705–3714. https://doi.org/10.1039/c9ra08274c

    Article  CAS  Google Scholar 

  70. Li W, Qi X, Zhao CY, Xu XF, Tang AN, Kong DM (2017) A rapid and facile detection for specific small-sized amino acids based on target-triggered destruction of metal organic frameworks. ACS Appl Mater Interfaces 9(1):236–243. https://doi.org/10.1021/acsami.6b13998

    Article  CAS  PubMed  Google Scholar 

  71. Chen ML, Chen JH, Ding L, Xu Z, Wen L, Wang LB, Cheng YH (2017) Study of the detection of bisphenol a based on a nano-sized metal-organic framework crystal and an aptamer. Anal Methods 9(6):906–909. https://doi.org/10.1039/c6ay03151j

    Article  CAS  Google Scholar 

  72. Sun X, Wang Y, Zhang L, Liu S, Zhang M, Wang J, Ning B, Peng Y, He J, Hu Y, Gao Z (2020) CRISPR-cas9 triggered two-step isothermal amplification method for E. coli O157:H7 detection based on a metal-organic framework platform. Anal Chem 92(4):3032–3041. https://doi.org/10.1021/acs.analchem.9b04162

    Article  CAS  PubMed  Google Scholar 

  73. Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X (2020) Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer: a simple and universal biosensing platform. Anal Chem 92(3):2739–2747. https://doi.org/10.1021/acs.analchem.9b04996

    Article  CAS  PubMed  Google Scholar 

  74. Wang HS, Liu HL, Wang K, Ding Y, Xu JJ, Xia XH, Chen HY (2017) Insight into the unique fluorescence quenching property of metal-organic frameworks upon DNA binding. Anal Chem 89(21):11366–11371. https://doi.org/10.1021/acs.analchem.7b02256

    Article  CAS  PubMed  Google Scholar 

  75. Xia Q, Wang H, Huang B, Yuan X, Zhang J, Zhang J, Jiang L, Xiong T, Zeng G (2019) State-of-the-art advances and challenges of iron-based metal organic frameworks from attractive features, synthesis to multifunctional applications. Small 15(2):e1803088. https://doi.org/10.1002/smll.201803088

    Article  CAS  PubMed  Google Scholar 

  76. Zhao M, Lu Q, Ma Q, Zhang H (2017) Two-dimensional metal-organic framework nanosheets. Small Methods 1(1–2). https://doi.org/10.1002/smtd.201600030

  77. Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X (2019) Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications. Adv Sci 6(12):1802373. https://doi.org/10.1002/advs.201802373

    Article  Google Scholar 

  78. Otsubo K, Haraguchi T, Kitagawa H (2017) Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks. Coord Chem Rev 346:123–138. https://doi.org/10.1016/j.ccr.2017.03.022

    Article  CAS  Google Scholar 

  79. Murphy MJ, Zenere KA, Ragon F, Southon PD, Kepert CJ, Neville SM (2017) Guest programmable multistep spin crossover in a porous 2-D Hofmann-type material. J Am Chem Soc 139(3):1330–1335. https://doi.org/10.1021/jacs.6b12465

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Qu S, Xu L (2019) Progress in the study of virus detection methods: the possibility of alternative methods to validate virus inactivation. Biotechnol Bioeng 116(8):2095–2102. https://doi.org/10.1002/bit.27003

    Article  CAS  PubMed  Google Scholar 

  81. Yang SP, Chen SR, Liu SW, Tang XY, Qin L, Qiu GH, Chen JX, Chen WH (2015) Platforms formed from a three-dimensional Cu-based zwitterionic metal-organic framework and probe ss-DNA: selective fluorescent biosensors for human immunodeficiency virus 1 ds-DNA and Sudan virus RNA sequences. Anal Chem 87(24):12206–12214. https://doi.org/10.1021/acs.analchem.5b03084

    Article  CAS  PubMed  Google Scholar 

  82. Qin L, Lin LX, Fang ZP, Yang SP, Qiu GH, Chen JX, Chen WH (2016) A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: a sensing platform for ebolavirus RNA sequences. Chem Commun 52(1):132–135. https://doi.org/10.1039/c5cc06697b

    Article  CAS  Google Scholar 

  83. Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Tilley RD, Hibbert DB, Kavallaris M, Gooding JJ (2018) Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol 13(11):1066–1071. https://doi.org/10.1038/s41565-018-0232-x

    Article  CAS  PubMed  Google Scholar 

  84. Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM (2016) Nanotechnology for delivery of peptide nucleic acids (PNAs). J Control Release 240:302–311. https://doi.org/10.1016/j.jconrel.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44(10):2963–2997. https://doi.org/10.1039/c4cs00370e

    Article  CAS  PubMed  Google Scholar 

  86. Wu S, Han Y, Wang L, Li J, Sun Z, Zhang M, Liu P, Li G (2019) Sensor array fabricated with nanoscale metal-organic frameworks for the histopathological examination of colon cancer. Anal Chem 91(16):10772–10778. https://doi.org/10.1021/acs.analchem.9b02381

    Article  CAS  PubMed  Google Scholar 

  87. Liu X, Zou L, Yang X, Wang Q, Zheng Y, Geng X, Liao G, Nie W, Wang K (2019) Point-of-care assay of alkaline phosphatase enzymatic activity using a thermometer or temperature discoloration sticker as readout. Anal Chem 91(12):7943–7949. https://doi.org/10.1021/acs.analchem.9b01883

    Article  CAS  PubMed  Google Scholar 

  88. Zeissig S, Blumberg RS (2014) Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol 15(4):307–310. https://doi.org/10.1038/ni.2847

    Article  CAS  PubMed  Google Scholar 

  89. Gaudin V (2017) Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—a comprehensive review. Biosens Bioelectron 90:363–377. https://doi.org/10.1016/j.bios.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  90. De Acha N, Elosua C, Corres JM, Arregui FJ (2019) Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors 19(3). https://doi.org/10.3390/s19030599

  91. Huang J, Gao X, Jia J, Kim JK, Li Z (2014) Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal Chem 86(6):3209–3215. https://doi.org/10.1021/ac500192r

    Article  CAS  PubMed  Google Scholar 

  92. Feng Y, Shao X, Huang K, Tian J, Mei X, Luo Y, Xu W (2018) Mercury nanoladders: a new method for DNA amplification, signal identification and their application in the detection of Hg(II) ions. Chem Commun 54(58):8036–8039. https://doi.org/10.1039/c8cc03851a

    Article  CAS  Google Scholar 

  93. Zhao SN, Wu LL, Feng J, Song SY, Zhang HJ (2016) An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg2+ ion. Inorg Chem Front 3(3):376–380. https://doi.org/10.1039/c5qi00252d

    Article  CAS  Google Scholar 

  94. Hu PP, Liu N, Wu KY, Zhai LY, Xie BP, Sun B, Duan WJ, Zhang WH, Chen JX (2018) Successive and specific detection of Hg2+ and I by a DNA@MOF biosensor: experimental and simulation studies. Inorg Chem 57(14):8382–8389. https://doi.org/10.1021/acs.inorgchem.8b01051

    Article  CAS  PubMed  Google Scholar 

  95. Chen HL, Li RT, Wu KY, Hu PP, Zhang Z, Huang NH, Zhang WH, Chen JX (2020) Experimental and theoretical validations of a one-pot sequential sensing of Hg2+ and biothiols by a 3D Cu-based zwitterionic metal-organic framework. Talanta 210:120596. https://doi.org/10.1016/j.talanta.2019.120596

    Article  CAS  PubMed  Google Scholar 

  96. Huang NH, Li RT, Fan C, Wu KY, Zhang Z, Chen JX (2019) Rapid sequential detection of Hg2+ and biothiols by a probe DNA-MOF hybrid sensory system. J Inorg Biochem 197:110690. https://doi.org/10.1016/j.jinorgbio.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  97. Wang L, Zhi WJ, Lian DS, Wang Y, Han J, Wang Y (2019) HRP@ZIF-8/DNA hybrids: functionality integration of ZIF-8 via biomineralization and surface absorption. ACS Sustain Chem Eng 7(17):14611–14620. https://doi.org/10.1021/acssuschemeng.9b02348

    Article  CAS  Google Scholar 

  98. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24(36):4811–4841, 5014. https://doi.org/10.1002/adma.201201690

    Article  CAS  PubMed  Google Scholar 

  99. Liu S, Huo Y, Kang W, Gao Z (2020) Recent advances in surface-enhanced Raman spectroscopy for the detection of tumor markers. Chin Sci Bull 65(15):1448–1462. https://doi.org/10.1360/tb-2019-0640

    Article  Google Scholar 

  100. Wang HS, Li J, Li JY, Wang K, Ding Y, Xia XH (2017) Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Mater 9(3):e354–e354. https://doi.org/10.1038/am.2017.7

    Article  CAS  Google Scholar 

  101. Zhu L, Wong BJC, Li Y, Xin H, Liu B, Lei J (2019) Quencher-delocalized emission strategy of aiegen-based metal-organic framework for profiling of subcellular glutathione. Chemistry 25(18):4665–4669. https://doi.org/10.1002/chem.201900151

    Article  CAS  PubMed  Google Scholar 

  102. Liu Y, Hou W, Xia L, Cui C, Wan S, Jiang Y, Yang Y, Wu Q, Qiu L, Tan W (2018) ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem Sci 9(38):7505–7509. https://doi.org/10.1039/c8sc02210k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Park J, Jiang Q, Feng D, Mao L, Zhou HC (2016) Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138(10):3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  PubMed  Google Scholar 

  104. Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589

    Article  CAS  PubMed  Google Scholar 

  105. Lismont M, Dreesen L, Wuttke S (2017) Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Funct Mater 27(14). https://doi.org/10.1002/adfm.201606314

  106. Duan W, Zhao Z, An H, Zhang Z, Cheng P, Chen Y, Huang H (2019) State-of-the-art and prospects of biomolecules: incorporation in functional metal-organic frameworks. Top Curr Chem 377(6):34. https://doi.org/10.1007/s41061-019-0258-z

    Article  CAS  Google Scholar 

  107. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6(4):20160027. https://doi.org/10.1098/rsfs.2016.0027

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhou J, Tian G, Zeng L, Song X, Bian XW (2018) Nanoscaled metal-organic frameworks for biosensing, imaging, and cancer therapy. Adv Healthc Mater 7(10):e1800022. https://doi.org/10.1002/adhm.201800022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFC1602903, 2018YFC1602904) and the National Natural Science Foundation of China (No.21976210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-an Ning or Yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Yp., Liu, S., Gao, Zx. et al. State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Microchim Acta 188, 168 (2021). https://doi.org/10.1007/s00604-021-04827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04827-9

Keywords

Navigation