Skip to main content

Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles

Abstract

Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors - principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26. https://doi.org/10.1016/s0009-8981(01)00629-5

    CAS  Article  PubMed  Google Scholar 

  2. Farka Z, Mickert MJ, Pastucha M, Mikusova Z, Skladal P, Gorris HH (2020) Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays. Angew Chem Int Edit 59(27):10746–10773. https://doi.org/10.1002/anie.201913924

    CAS  Article  Google Scholar 

  3. Susaki EA, Ueda HR (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23(1):137–157. https://doi.org/10.1016/j.chembiol.2015.11.009

    CAS  Article  PubMed  Google Scholar 

  4. Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal Chem 105:218–224. https://doi.org/10.1016/j.trac.2018.05.012

    CAS  Article  Google Scholar 

  5. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667. https://doi.org/10.1016/s1470-2045(06)70793-8

    CAS  Article  PubMed  Google Scholar 

  6. Farka Z, Juriik T, Kovaar D, Trnkova L, Sklaadal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037

    CAS  Article  PubMed  Google Scholar 

  7. Dong JL, Song LN, Yin JJ, He WW, Wu YH, Gu N, Zhang Y (2014) Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces 6(3):1959–1970. https://doi.org/10.1021/am405009f

    CAS  Article  PubMed  Google Scholar 

  8. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20(12):2454–2469. https://doi.org/10.1016/j.bios.2004.11.003

    CAS  Article  PubMed  Google Scholar 

  9. Zhou L, Yan J, Tong L, Han X, Wu X, Guo P (2016) Quantum dot-based immunohistochemistry for pathological applications. Cancer Transl Med 2(1):21–28. https://doi.org/10.4103/2395-3977.177562

  10. Wu Y-T, Qiu X, Lindbo S, Susumu K, Medintz IL, Hober S, Hildebrandt N (2018) Quantum dot-based FRET immunoassay for HER2 using Ultrasmall affinity proteins. Small 14:1802266. https://doi.org/10.1002/smll.201802266

  11. Tang DP, Lin YX, Zhou Q (2018) Carbon dots prepared from Litchi chinensis and modified with manganese dioxide nanosheets for use in a competitive fluorometric immunoassay for aflatoxin B-1. Microchim Acta 185(10):476. https://doi.org/10.1007/s00604-018-3012-2

    CAS  Article  Google Scholar 

  12. Mickert MJ, Farka Z, Kostiv U, Hlavacek A, Horak D, Skladal P, Gorris HH (2019) Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal Chem 91(15):9435–9441. https://doi.org/10.1021/acs.analchem.9b02872

    CAS  Article  PubMed  Google Scholar 

  13. He H, Howard CB, Chen YH, Wen SH, Lin GG, Zhou JJ, Thurecht KJ, Jin DY (2018) Bispecific antibody-functionalized upconversion nanoprobe. Anal Chem 90(5):3024–3029. https://doi.org/10.1021/acs.analchem.7b05341

    CAS  Article  PubMed  Google Scholar 

  14. Farka Z, Mickert MJ, Mikusova Z, Hlavacek A, Bouchalova P, Xu WS, Bouchal P, Skladal P, Gorris HH (2020) Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. Nanoscale 12(15):8303–8313. https://doi.org/10.1039/c9nr10568a

    CAS  Article  PubMed  Google Scholar 

  15. Modlitbova P, Porizka P, Kaiser J (2020) Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. Trac Trends Anal Chem 122:10. https://doi.org/10.1016/j.trac.2019.115729

    CAS  Article  Google Scholar 

  16. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66(4):347–419. https://doi.org/10.1366/11-06574

    CAS  Article  PubMed  Google Scholar 

  17. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta B At Spectrosc 101:171–182. https://doi.org/10.1016/j.sab.2014.08.039

    CAS  Article  Google Scholar 

  18. Modlitbova P, Farka Z, Pastucha M, Porizka P, Novotny K, Skladal P, Kaiser J (2019) Laser-induced breakdown spectroscopy as a novel readout method for nanoparticle-based immunoassays. Microchim Acta 186(9):10. https://doi.org/10.1007/s00604-019-3742-9

    CAS  Article  Google Scholar 

  19. Busser B, Moncayo S, Coll JL, Sancey L, Motto-Ros V (2018) Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications. Coord Chem Rev 358:70–79. https://doi.org/10.1016/j.ccr.2017.12.006

    CAS  Article  Google Scholar 

  20. Gaudiuso R, Melikechi N, Abdel-Salam ZA, Harith MA, Palleschi V, Motto-Ros V, Busser B (2019) Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim Acta B At Spectrosc 152:123–148. https://doi.org/10.1016/j.sab.2018.11.006

    CAS  Article  Google Scholar 

  21. Dell’Aglio M, Alrifai R, Giacomo A (2018) Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim Acta B At Spectrosc 148:105–112. https://doi.org/10.1016/j.sab.2018.06.008

    CAS  Article  Google Scholar 

  22. Zhao X, Zhao C, Du X (2019) Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle-enhanced laser-induced breakdown spectroscopy. Sci Rep 9:906. https://doi.org/10.1038/s41598-018-37556-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Fortes FJ, Fernandez-Bravo A, Laserna JJ (2014) Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 100:78–85. https://doi.org/10.1016/j.sab.2014.08.023

    CAS  Article  Google Scholar 

  24. He Q, Liu Y, He Y (2016) Digital barcodes of suspension array using laser induced breakdown spectroscopy. Sci Rep 6:36511. https://doi.org/10.1038/srep36511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Markushin Y, Sivakumar P, Connolly D, Melikechi N (2015) Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal Bioanal Chem 407(7):1849–1855. https://doi.org/10.1007/s00216-014-8433-0

    CAS  Article  PubMed  Google Scholar 

  26. Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, Hodek P, Kizek R, Adam V (2014) Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 101:220–225. https://doi.org/10.1016/j.sab.2014.08.037

    CAS  Article  Google Scholar 

  27. Gondhalekar C, Biela E, Rajwa B, Bae E, Patsekin V, Sturgis J, Reynolds C, Doh IJ, Diwakar P, Stanker L, Zorba V, Mao XL, Russo R, Robinson JP (2020) Detection of E. coli labeled with metal-conjugated antibodies using lateral-flow assay and laser-induced breakdown spectroscopy. Anal Bioanal Chem 412(6):1291–1301. https://doi.org/10.1007/s00216-019-02347-3

    CAS  Article  PubMed  Google Scholar 

  28. Peltomaa R, Farka Z, Mickert MJ, Brandmeier JC, Pastucha M, Hlaváček A, Martínez-Orts M, Canales Á, Skládal P, Benito-Peña E, Moreno-Bondi MC, Gorris HH (2020) Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens Bioelectron 170:112683. https://doi.org/10.1016/j.bios.2020.112683

    CAS  Article  PubMed  Google Scholar 

  29. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065. https://doi.org/10.1038/nature08777

    CAS  Article  PubMed  Google Scholar 

  30. Kostiv U, Lobaz V, Kucka J, Svec P, Sedlacek O, Hruby M, Janouskova O, Francova P, Kolarova V, Sefc L, Horak D (2017) A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable I-125-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9(43):16680–16688. https://doi.org/10.1039/c7nr05456d

    CAS  Article  PubMed  Google Scholar 

  31. Subik K, Lee J-F, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung M-C, Bonfiglio T, Hicks D, Ping T (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer 4:35–41. https://doi.org/10.1177/117822341000400004

    Article  PubMed  Google Scholar 

  32. Modlitbova P, Hlavacek A, Svestkova T, Porizka P, Simonikova L, Novotny K, Kaiser J (2019) The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225:723–734. https://doi.org/10.1016/j.chemosphere.2019.03.074

    CAS  Article  PubMed  Google Scholar 

  33. Farka Z, Mickert MJ, Hlavacek A, Skladal P, Gorris HH (2017) Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal Chem 89(21):11825–11830. https://doi.org/10.1021/acs.analchem.7b03542

    CAS  Article  PubMed  Google Scholar 

  34. Hlavacek A, Farka Z, Hubner M, Hornakova V, Nemecek D, Niessner R, Skladal P, Knopp D, Gorris HH (2016) Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal Chem 88(11):6011–6017. https://doi.org/10.1021/acs.analchem.6b01083

    CAS  Article  PubMed  Google Scholar 

  35. Skarkova P, Novotny K, Lubal P, Jebava A, Porizka P, Klus J, Farka Z, Hrdlicka A, Kaiser J (2017) 2d distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 131:107–114. https://doi.org/10.1016/j.sab.2017.03.016

    CAS  Article  Google Scholar 

  36. Dukhno O, Przybilla F, Muhr V, Buchner M, Hirsch T, Mely Y (2018) Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale 10(34):15904–15910. https://doi.org/10.1039/c8nr03892a

    CAS  Article  PubMed  Google Scholar 

  37. Cid-Barrio L, Calderon-Celis F, Abasolo-Linares P, Fernandez-Sanchez ML, Costa-Fernandez JM, Encinar JR, Sanz-Meder A (2018) Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trac Trends Anal Chem 104:148–159. https://doi.org/10.1016/j.trac.2017.09.024

    CAS  Article  Google Scholar 

  38. Malile B, Brkic J, Bouzekri A, Wilson DJ, Ornatsky O, Peng C, Chen JIL (2019) DNA-conjugated gold nanoparticles as high-mass probes in imaging mass cytometry. ACS Appl Bio Mater 2(10):4316–4323. https://doi.org/10.1021/acsabm.9b00574

    CAS  Article  Google Scholar 

  39. Lores-Padin A, Menero-Valdes P, Fernandez B, Pereiro R (2020) Nanoparticles as labels of specific-recognition reactions for the determination of biomolecules by inductively coupled plasma-mass spectrometry. Anal Chim Acta 1128:251–268. https://doi.org/10.1016/j.aca.2020.07.008

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Antonín Hlaváček for the synthesis of UCNPs and Matthias J. Mickert for the help with the optimization of the ICC experiments.

Funding

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) under the projects CEITEC 2020 (LQ1601), INTER-ACTION (LTAB19011), and by the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110). We acknowledge CF Nanobiotechnology of CIISB, Instruct-CZ Centre, supported by MEYS CR (LM2018127). PP and PM gratefully acknowledge the financial support by the Czech Science Foundation within the project 20-19526Y. KV, IG, and KN acknowledge the support by the project 1390/2020 Analytical and physical chemistry in the research of biological, geological, and synthetic materials (BIOGEOSYNT). MP and ZF gratefully acknowledge the financial support by the Czech Science Foundation within the project GJ20-30004Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Novotný.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pořízka, P., Vytisková, K., Obořilová, R. et al. Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles. Microchim Acta 188, 147 (2021). https://doi.org/10.1007/s00604-021-04816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04816-y

Keywords

  • Immunocytochemistry
  • Immunohistochemistry
  • Laser-induced breakdown spectroscopy
  • Tag-LIBS
  • Photon-upconversion nanoparticles