Skip to main content
Log in

A microfluidic column of water index–matched packed microspheres for label-free observation of water pollutants

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A microfluidic, label-free optical sensor for water pollutants, which is based on a packed micro-column of microspheres with refractive index similar to that of water, is presented. The perfluoropolyether microspheres are synthetized by membrane emulsification followed by UV irradiation. The microfluidic channel hosting the packed column is transparent when filled with pure water as a consequence of refractive index matching, whereas it scatters light in presence of compounds with lipophilic moieties that spontaneously adsorb on the fluorinated microspheres. The device is characterized by investigating the response to cationic and anionic surfactants. Both the signal growth rate and the recovery rate measured during washing with water depend on the type and concentration of the compounds. The cationic surfactants tested display a larger signal increase, linearly scaling with concentration. A limit of detection of 1 μM is obtained in the current configuration. The water index–matched microspheres enable to access an additional analytical parameter, that is the propagation velocity of the scattering signal along the column. This parameter is also found to scale linearly with concentration, hence providing a complementary analytical tool sensitive to the adhesion kinetics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data that support the findings of this study are available from the corresponding authors, upon reasonable request.

References

  1. Ivanković T, Hrenović J (2010) Surfactants in the environment. Arch Ind Hyg Toxicol 61:95–110. https://doi.org/10.2478/10004-1254-61-2010-1943

    Article  Google Scholar 

  2. Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, López FJ (2015) Advancing towards universal screening for organic pollutants in waters. J Hazard Mater 282:86–95. https://doi.org/10.1016/j.jhazmat.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Kutter JP (2012) Liquid phase chromatography on microchips. J Chromatogr A 1221:72–82. https://doi.org/10.1016/j.chroma.2011.10.044

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad AL, Low SC, Shukor SRA, Fernando WJN, Ismail A (2010) Hindered diffusion in lateral flow nitrocellulose membrane: experimental and modeling studies. J Memb Sci 357:178–184. https://doi.org/10.1016/j.memsci.2010.04.018

    Article  CAS  Google Scholar 

  5. Malmstadt N, Yager P, Hoffman AS, Stayton PS (2003) A smart microfluidic affinity chromatography matrix composed of poly( N -isopropylacrylamide)-coated beads. Anal Chem 75:2943–2949. https://doi.org/10.1021/ac034274r

    Article  CAS  PubMed  Google Scholar 

  6. Jemere AB, Martinez D, Finot M, Harrison DJ (2009) Capillary electrochromatography with packed bead beds in microfluidic devices. Electrophoresis 30:4237–4244. https://doi.org/10.1002/elps.200900334

    Article  CAS  PubMed  Google Scholar 

  7. Flemming JH, Baca HK, Werner-Washburne M, Brozik SM, López GP (2006) A packed microcolumn approach to a cell-based biosensor. Sensors Actuators B Chem 113:376–381. https://doi.org/10.1016/j.snb.2005.03.098

    Article  CAS  Google Scholar 

  8. Kralj JG, Arya C, Tona A, Forbes TP, Munson MS, Sorbara L, Srivastava S, Forry SP (2012) A simple packed bed device for antibody labelled rare cell capture from whole blood. Lab Chip 12:4972. https://doi.org/10.1039/c2lc41048f

    Article  CAS  PubMed  Google Scholar 

  9. Sadavarte R, Madadkar P, Filipe CD, Ghosh R (2018) Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. J Chromatogr B 1073:27–33. https://doi.org/10.1016/j.jchromb.2017.12.003

    Article  CAS  Google Scholar 

  10. Ng JK-K, Feng H, Liu W-T (2007) Rapid discrimination of single-nucleotide mismatches using a microfluidic device with monolayered beads. Anal Chim Acta 582:295–303. https://doi.org/10.1016/j.aca.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Heo J, Crooks RM (2006) Hybridization of DNA to bead-immobilized probes confined within a microfluidic channel. Langmuir 22:10130–10134. https://doi.org/10.1021/la0616956

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro MS, Haswell SJ, Lye GJ, Bracewell DG (2009) Design and characterization of a microfluidic packed bed system for protein breakthrough and dynamic binding capacity determination. Biotechnol Prog 25:277–285. https://doi.org/10.1002/btpr.99

    Article  CAS  PubMed  Google Scholar 

  13. Cacheux J, Brut M, Bancaud A, Cordelier P, Leïchlé T (2018) Spatial analysis of nanofluidic-embedded biosensors for wash-free single-nucleotide difference discrimination. ACS Sensors 3:606–611. https://doi.org/10.1021/acssensors.7b00667

    Article  CAS  PubMed  Google Scholar 

  14. Zanchetta G, Lanfranco R, Giavazzi F, Bellini T, Buscaglia M (2017) Emerging applications of label-free optical biosensors. Nanophotonics 6:627–645. https://doi.org/10.1515/nanoph-2016-0158

  15. Giavazzi F, Salina M, Cerbino R, Bassi M, Prosperi D, Ceccarello E, Damin F, Sola L, Rusnati M, Chiari M, Chini B, Bellini T, Buscaglia M (2013) Multispot, label-free biodetection at a phantom plastic–water interface. Proc Natl Acad Sci 110:9350–9355. https://doi.org/10.1073/pnas.1214589110

    Article  PubMed  Google Scholar 

  16. Giavazzi F, Salina M, Ceccarello E, Ilacqua A, Damin F, Sola L, Chiari M, Chini B, Cerbino R, Bellini T, Buscaglia M (2014) A fast and simple label-free immunoassay based on a smartphone. Biosens Bioelectron 58:395–402. https://doi.org/10.1016/j.bios.2014.02.077

    Article  CAS  PubMed  Google Scholar 

  17. Lanfranco R, Buscaglia M (2016) Invisible fluorinated materials for optical sensing. In: Reference module in materials science and materials engineering. Elsevier

  18. Salina M, Giavazzi F, Ceccarello E, Damin F, Chiari M, Ciuffo M, Accotto GP, Buscaglia M (2016) Multi-spot, label-free detection of viral infection in complex media by a non-reflecting surface. Sensors Actuators B Chem 223:957–962. https://doi.org/10.1016/j.snb.2015.09.122

    Article  CAS  Google Scholar 

  19. Zilio C, Bernardi A, Palmioli A, Salina M, Tagliabue G, Buscaglia M, Consonni R, Chiari M (2015) New “clickable” polymeric coating for glycan microarrays. Sensors Actuators B Chem 215:412–420. https://doi.org/10.1016/j.snb.2015.03.079

    Article  CAS  Google Scholar 

  20. Nava G, Ceccarello E, Giavazzi F, Salina M, Damin F, Chiari M, Buscaglia M, Bellini T, Zanchetta G (2016) Label-free detection of DNA single-base mismatches using a simple reflectance-based optical technique. Phys Chem Chem Phys 18:13395–13402. https://doi.org/10.1039/C5CP08017G

    Article  CAS  PubMed  Google Scholar 

  21. Lanfranco R, Giavazzi F, Salina M, Tagliabue G, Di Nicolò E, Bellini T, Buscaglia M (2016) Selective adsorption on fluorinated plastic enables the optical detection of molecular pollutants in water. Phys Rev Appl 5:054012. https://doi.org/10.1103/PhysRevApplied.5.054012

  22. Lanfranco R, Giavazzi F, Bellini T, Di Nicolò E, Buscaglia M (2020) Fabrication and optical modeling of micro-porous membranes index-matched with water for on-line sensing applications. Macromol Mater Eng 305:1900701. https://doi.org/10.1002/mame.201900701

  23. van de Hulst HC (1957) Light scattering by small particles. Dover, New York

    Google Scholar 

  24. Saez J, Etxebarria J, Antoñana-Diez M, Benito-Lopez F (2016) On-demand generation and removal of alginate biocompatible microvalves for flow control in microfluidics. Sensors Actuators B Chem 234:1–7. https://doi.org/10.1016/j.snb.2016.04.140

    Article  CAS  Google Scholar 

  25. Saez J, Antonana M, Etxebarria J, Benito-Lopez F (2015) In-situ generated biocompatible alginate actuators for flow control in microfluidics. In: 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, pp. 2132–2135

  26. Merkel TC, Pinnau I, Prabhakar R, Freeman BD (2006) Gas and vapor transport properties of perfluoropolymers. In: Materials science of membranes for gas and vapor separation. John Wiley & Sons, Ltd, Chichester, pp 251–270

    Chapter  Google Scholar 

  27. Lanfranco R, Saez J, Di Nicolò E, Benito-Lopez F, Buscaglia M (2018) Phantom membrane microfluidic cross-flow filtration device for the direct optical detection of water pollutants. Sensors Actuators B Chem 257:924–930. https://doi.org/10.1016/j.snb.2017.11.024

  28. Kudin KN, Car R (2008) Why are water−hydrophobic interfaces charged? J Am Chem Soc 130:3915–3919. https://doi.org/10.1021/ja077205t

    Article  CAS  PubMed  Google Scholar 

  29. Shrivas K, Sahu S, Ghorai A, Shankar R (2016) Gold nanoparticles-based colorimetric determination of cationic surfactants in environmental water samples via both electrostatic and hydrophobic interactions. Microchim Acta 183:827–836. https://doi.org/10.1007/s00604-015-1689-z

    Article  CAS  Google Scholar 

  30. Öztekin N, Erim FB (2005) Determination of cationic surfactants as the preservatives in an oral solution and a cosmetic product by capillary electrophoresis. J Pharm Biomed Anal 37:1121–1124. https://doi.org/10.1016/j.jpba.2004.07.050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Emanuele Di Nicolò and Mattia Bassi for useful discussions.

Code availability

Not applicable.

Funding

This research was funded by the European Union’s Seventh Framework Programme (FP7) for research and technological development and demonstration through the NAPES project, grant agreement no. 604241.

Author information

Authors and Affiliations

Authors

Contributions

Roberta Lanfranco: Conceptualization, Methodology, Formal analysis and investigation, Writing- Reviewing and Editing; Janire Saez: Methodology, Writing- Reviewing and Editing; Deborah Abati: Formal analysis and investigation, Visualization; Thomas Carzaniga: Data curation, Formal analysis and investigation, Visualization; Fernando Benito-Lopez: Supervision, Conceptualization, Resources, Writing- Reviewing and Editing; Marco Buscaglia: Supervision, Conceptualization, Resources, Writing- Original draft preparation.

Corresponding authors

Correspondence to Fernando Benito-Lopez or Marco Buscaglia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanfranco, R., Saez, J., Abati, D. et al. A microfluidic column of water index–matched packed microspheres for label-free observation of water pollutants. Microchim Acta 188, 143 (2021). https://doi.org/10.1007/s00604-021-04804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04804-2

Keywords

Navigation