Skip to main content
Log in

Salt-resistant nanosensor for fast sulfadimethoxine tracing based on oxygen-doped g-C3N4 nanoplates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel oxygen-doped g-C3N4 nanoplate (OCNP) structure that can serve as an efficient sulfadimethoxine (SDM) sensing platform has been developed. Taking advantage of its inherent oxygen-containing functional groups and 2D layered structure with π-conjugated system, OCNP exhibits effective radiative recombination of surface-confined electron-hole pairs and efficient π-π interaction with SDM. This causes rapid fluorescence response and thus ensures the fast and continuous monitoring of SDM. Based on the fluorescence experiments and band structure calculation, the mechanism of the SDM-induced quenching phenomenon was mainly elucidated as the photoinduced electron transfer process under a dynamic quenching mode. Under optimized conditions, the as-proposed nanosensor, which emitted strong fluorescence at 375 nm with an excitation wavelength at 255 nm, presents an excellent analytical performance toward SDM with a wide linear range from 3 to 60 μmol L−1 and a detection limit of 0.85 μmol L−1 (S/N = 3). In addition, this strategy exhibits satisfactory recovery varied from 94 to 103% with relative standard derivations (RSD) in the range 0.9 to 6.8% in real water samples. It also shows marked tolerability to a series of high concentrations of metals and inorganic salts. This strategy not only broadens the application of oxygen-doped g-C3N4 nanomaterial in antibiotic sensing field but also presents a promising potential for on-line contaminant tracing in complex environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu MT, Li QL, Sun HH, Jia S, He X, Li M, Zhang XX, Ye L (2018) Impact of salinity on antibiotic resistance genes in wastewater treatment bioreactors. Chem Eng J 338:557–563. https://doi.org/10.1016/j.cej.2018.01.066

    Article  CAS  Google Scholar 

  2. Guo N, Wang Y, Tong T, Wang SG (2018) The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater. Water Res 133:79–86. https://doi.org/10.1016/j.watres.2018.01.020

    Article  CAS  PubMed  Google Scholar 

  3. Shi XQ, Leong KY, Ng HY (2017) Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresour Technol 245:1238–1244. https://doi.org/10.1016/j.biortech.2017.08.150

    Article  CAS  PubMed  Google Scholar 

  4. Liang YX, Zhu H, Bañuelos G, Shutes B, Yan BX, Cheng XW (2018) Removal of sulfamethoxazole from salt-laden wastewater in constructed wetlands affected by plant species, salinity levels and co-existing contaminants. Chem Eng J 341:462–470. https://doi.org/10.1016/j.cej.2018.02.059

    Article  CAS  Google Scholar 

  5. Shi XQ, Lefebvre O, Ng KK, Ng HY (2014) Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour Technol 153:79–86. https://doi.org/10.1016/j.biortech.2013.11.045

    Article  CAS  PubMed  Google Scholar 

  6. Kümmerer K (2009) Antibiotics in the aquatic environment-a review-part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  PubMed  Google Scholar 

  7. Grenni P, Ancona V, Barra Caracciolo A (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39. https://doi.org/10.1016/j.microc.2017.02.006

    Article  CAS  Google Scholar 

  8. Li YZ, Wu XW, Li ZQ, Zhong S, Wang W, Wang A, Chen J (2015) Fabrication of CoFe2O4-graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples. Talanta 144:1279–1286. https://doi.org/10.1016/j.talanta.2015.08.006

  9. Chafer-Pericas C, Maquieira A, Puchades R, Miralles J, Moreno A (2010) Fast screening immunoassay of sulfonamides in commercial fish samples. Anal Bioanal Chem 396:911–921. https://doi.org/10.1007/s00216-009-3229-3

    Article  CAS  PubMed  Google Scholar 

  10. Tsizin S, Bokka R, Keshet U, Alon T, Fialkov AB, Tal N, Amirav A (2017) Comparison of electrospray LC–MS, LC–MS with Cold EI and GC–MS with Cold EI for sample identification. Int J Mass Spectrom 422:119–125. https://doi.org/10.1016/j.ijms.2017.09.006

    Article  CAS  Google Scholar 

  11. Hou XL, Chen G, Zhu L, Yang T, Zhao J, Wang L, Wu YL (2014) Development and validation of an ultra high performance liquid chromatography tandem mass spectrometry method for simultaneous determination of sulfonamides, quinolones and benzimidazoles in bovine milk. J Chromatogr B 962:20–29. https://doi.org/10.1016/j.jchromb.2014.05.005

    Article  CAS  Google Scholar 

  12. Jank L, Martins MT, Arsand JB, Ferrão MF, Hoff RB, Barreto F, Pizzolato TM (2018) An LC-ESI-MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: validation and surveillance. Food Addit Contam Part A 35:1975–1989. https://doi.org/10.1080/19440049.2018.1508895

    Article  CAS  Google Scholar 

  13. Chen Z, Yu C, Xi J, Tang S, Bao T, Zhang J (2019) A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. Microchim Acta 186:393. https://doi.org/10.1007/s00604-019-3513-7

    Article  CAS  Google Scholar 

  14. Kawai Y, Miyake Y, Hondo T, Lehmann JL, Terada K, Toyoda M (2020) New method for improving LC/time-of-flight mass spectrometry detection limits using simultaneous ion counting and waveform averaging. Anal Chem 92:6579–6586. https://doi.org/10.1021/acs.analchem.0c00301

    Article  CAS  PubMed  Google Scholar 

  15. Galarini R, Diana F, Moretti S, Puppini B, Saluti G, Persic L (2014) Development and validation of a new qualitative ELISA screening for multiresidue detection of sulfonamides in food and feed. Food Control 35:300–310. https://doi.org/10.1016/j.foodcont.2013.07.014

    Article  CAS  Google Scholar 

  16. Mehlhorn A, Rahimi P, Joseph Y (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors 8:54. https://doi.org/10.3390/bios8020054

    Article  CAS  PubMed Central  Google Scholar 

  17. Chen XX, Lin ZZ, Yao QH, Huang ZY (2020) A practical aptaprobe for sulfadimethoxine residue detection in water and fish based on the fluorescence quenching of CdTe QDs by poly(diallyldimethylammonium chloride). J Food Compos Anal 91:103526. https://doi.org/10.1016/j.jfca.2020.103526

    Article  CAS  Google Scholar 

  18. Guo Y, Wei W, Zhang Y, Dai Y, Wang W, Wang A (2020) Determination of sulfadimethoxine in milk with aptamer-functionalized Fe3O4 /graphene oxide as magnetic solid phase extraction adsorbent prior to HPLC. J Sep Sci 43:3499–3508. https://doi.org/10.1002/jssc.202000277

  19. Zhu W, Hao N, Lu J, Dai Z, Qian J, Yang X, Wang K (2020) Highly active metal-free peroxidase mimics based on oxygen-doped carbon nitride by promoting electron transfer capacity. Chem Commun 56:1409–1412. https://doi.org/10.1039/c9cc08311a

    Article  CAS  Google Scholar 

  20. Yuan Q, Zhang D, Yu P, Sun R, Javed H, Wu G, Alvarez PJJ (2020) Selective adsorption and photocatalytic degradation of extracellular antibiotic resistance genes by molecularly-imprinted graphitic carbon nitride. Environ Sci Technol 54:4621–4630. https://doi.org/10.1021/acs.est.9b06926

    Article  CAS  PubMed  Google Scholar 

  21. Song J, Huang M, Jiang N, Zheng S, Mu T, Meng L, Liu Y, Liu J, Chen G (2020) Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: fabrication, optimization, and mechanism. J Hazard Mater 391:122024. https://doi.org/10.1016/j.jhazmat.2020.122024

  22. Mo Z, Xu H, Chen Z, She X, Song Y, Lian J, Zhu X, Yan P, Lei Y, Yuan S, Li H (2019) Construction of MnO2/monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl Catal B-Environ 241:452–460. https://doi.org/10.1016/j.apcatb.2018.08.073

  23. An X, Hu C, Lan H, Liu H, Qu J (2018) Strongly coupled metal oxide/reassembled carbon nitride/Co-Pi heterostructures for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces 10:6424–6432. https://doi.org/10.1021/acsami.8b01070

  24. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  25. Cao S, Chen H, Jiang F, Hu Z, Wang X (2018) Construction of acetaldehyde-modified g-C3N4 ultrathin nanosheets via ethylene glycol-assisted liquid exfoliation for selective fluorescence sensing of Ag+. ACS Appl Mater Interfaces 10:44624–44633. https://doi.org/10.1021/acsami.8b15501

  26. Rong M, Cai Z, Xie L, Lin C, Song X, Luo F, Wang Y, Chen X (2016) Study on the ultrahigh quantum yield of fluorescent P,O-g-C3N4 nanodots and its application in cell imaging. Chemistry 22:9387–9395. https://doi.org/10.1002/chem.201601065

  27. Li Y, Bu Y, Jiang F, Dai X, Ao JP (2020) Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4. Biosens Bioelectron 150:111903. https://doi.org/10.1016/j.bios.2019.111903

  28. Du X, Zou G, Wang Z, Wang X (2015) A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 7:8701–8706. https://doi.org/10.1039/c5nr00665a

  29. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

  30. Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y (2018) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47:2298–2321. https://doi.org/10.1039/c7cs00840f

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48:12017–12019. https://doi.org/10.1039/c2cc35862j

  32. Liao G, Chen S, Quan X, Yu H, Zhao H (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22:2721–2726. https://doi.org/10.1039/c1jm13490f

  33. Huang ZF, Song J, Pan L, Wang Z, Zhang X, Zou JJ, Mi W, Zhang X, Wang L (2015) Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12:646–656. https://doi.org/10.1016/j.nanoen.2015.01.043

  34. Ran J, Ma TY, Gao G, Du X-W, Qiao SZ (2015) Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Environ Sci Technol 8:3708–3717. https://doi.org/10.1039/c5ee02650d

  35. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188. https://doi.org/10.1039/c2dt00054g

  36. Zhang G, Zhang J, Zhang M, Wang X (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091. https://doi.org/10.1039/c2jm00097k

    Article  CAS  Google Scholar 

  37. Mei H, Shu H, Lv M, Liu W, Wang X (2020) Fluorescent assay based on phenyl-modified g-C3N4 nanosheets for determination of thiram. Microchim Acta 187:159. https://doi.org/10.1007/s00604-020-4135-9

  38. Yang P, Zhao J, Wang J, Cao B, Li L, Zhu Z (2015) Light-induced synthesis of photoluminescent carbon nanoparticles for Fe3+ sensing and photocatalytic hydrogen evolution. J Mater Chem A 3:136–138. https://doi.org/10.1039/C4TA05155F

  39. Xu S, Ding J, Chen L (2018) A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica-graphitic carbon nitride composite. Anal Bioanal Chem 410:7103–7112. https://doi.org/10.1007/s00216-018-1310-5

    Article  CAS  PubMed  Google Scholar 

  40. Msagati TA, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta 58:605–610. https://doi.org/10.1016/S0039-9140(02)00327-2

  41. Guo J, Ye S, Li H, Song J, Qu J (2020) One-pot synthesized nitrogen-fluorine-codoped carbon quantum dots for ClO- ions detection in water samples. Dyes Pigments 175:108178. https://doi.org/10.1016/j.dyepig.2019.108178

  42. Bekale L, Agudelo D, Tajmir-Riahi HA (2015) Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf B 125:309–317. https://doi.org/10.1016/j.colsurfb.2014.11.037

    Article  CAS  Google Scholar 

  43. Zhuang J, Wang S, Tan Y, Xiao R, Chen J, Wang X, Jiang L, Wang Z (2019) Degradation of sulfadimethoxine by permanganate in aquatic environment: influence factors, intermediate products and theoretical study. Sci Total Environ 671:705–713. https://doi.org/10.1016/j.scitotenv.2019.03.277

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation, China (No. 22006070 to L.L.), Natural Science Foundation of Jiangsu Province (No. BK20200715 to L.L.), Natural Science Foundation of Jiangsu Province (No. BK20200728 to X.Z.), and Natural Science Research Project of Jiangsu Higher Education Institutions (No. 19KJB150012 to L.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Lin or Guoxiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Xu, C., He, H. et al. Salt-resistant nanosensor for fast sulfadimethoxine tracing based on oxygen-doped g-C3N4 nanoplates. Microchim Acta 188, 153 (2021). https://doi.org/10.1007/s00604-021-04800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04800-6

Keywords

Navigation