Skip to main content
Log in

Molecularly imprinted polymer amalgamation on narrow-gapped Archimedean-spiral interdigitated electrodes: resistance to electrolyte fouling in acidic medium

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A conventional photolithography technique was used to fabricate three types of Archimedean-spiral interdigitated electrodes (AIDEs) containing concentric interlocking electrodes with different electrode and gap sizes, i.e., 150 μm (D1), 100 μm (D2), and 50 μm (D3). The precision of the fabrication was validated by surface topography using scanning electron microscopy, high power microscopy, 3D-nano profilometry, and atomic force microscopy. These AIDEs were fabricated with a tolerance of ± 6 nm in dimensions. The insignificant current variation at the pico-ampere range for all bare AIDEs further proved the reproducibility of the device. The large gap sized AIDE (D1) is insensitive to acidic medium, whereas D2 and D3 are insensitive to alkali medium. D2 was the best with regard to its electrical characterization. Furthermore, uniformly synthesized molecularly imprinted polymer (MIP) nanoparticles prepared with human blood clotting factor IX and its aptamer were in the size range 140 to 160 nm, attached on the sensing surface and characterized. The average thickness of deposited MIP film was 1.7 μm. EDX data shows the prominent peaks for silicon and aluminum substrates as 61.79 and 22.52%, respectively. The MIP nanoparticles-deposited sensor surface was characterized by applying it in electrolyte solutions, and smooth curves with the current flow were observed at pH lower than 8 and discriminated against alkali media. This study provides a new MIP amalgamated AIDE with nano-gapped fingers enabling analysis of other biomaterials due to its operation in an ideal buffer range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ramanathan S, Gopinath SCB, Md. Arshad MK, Poopalan P (2019) Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: comprehensive assessment on current diagnostics. Biosens Bioelectron 141:111434. https://doi.org/10.1016/j.bios.2019.111434

    Article  CAS  PubMed  Google Scholar 

  2. Dalila RN, Md. Arshad MK, Gopinath SCB et al (2019) Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens Bioelectron 132:248–264. https://doi.org/10.1016/j.bios.2019.03.005

    Article  CAS  Google Scholar 

  3. Shrivastava S, Jadon N, Jain R (2016) Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. Trends Anal Chem 82:55–67. https://doi.org/10.1016/j.trac.2016.04.005

    Article  CAS  Google Scholar 

  4. Ding S, Das SR, Brownlee BJ, Parate K, Davis TM, Stromberg LR, Chan EKL, Katz J, Iverson BD, Claussen JC (2018) CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening. Biosens Bioelectron 117:68–74. https://doi.org/10.1016/j.bios.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  5. Rad AO, Azadbakht A (2019) An aptamer embedded in a molecularly imprinted polymer for impedimetric determination of tetracycline. Microchim Acta 186:2–11. https://doi.org/10.1007/s00604-018-3123-9

    Article  CAS  Google Scholar 

  6. Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM (2019) Antifouling (bio)materials for electrochemical (bio)sensing. Int J Mol Sci 20:423. https://doi.org/10.3390/ijms20020423

    Article  CAS  PubMed Central  Google Scholar 

  7. Lakshmipriya T, Gopinath SCB (2018) An introduction to biosensors and biomolecules. In: Nanobiosensors for biomolecular targeting. Elsevier Inc., pp. 1–21

  8. Gui R, Jin H, Guo H, Wang Z (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70. https://doi.org/10.1016/j.bios.2017.08.058

    Article  CAS  PubMed  Google Scholar 

  9. Lu B, Liu L, Wang J, Chen Y, Li Z, Gopinath SCB, Lakshmipriya T, Huo Z (2020) Detection of microRNA-335-5p on an Interdigitated electrode surface for determination of the severity of abdominal aortic aneurysms. Nanoscale Res Lett 15:105. https://doi.org/10.1186/s11671-020-03331-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Loong FK, Lakshmipriya T, Anbu P (2019) Assorted micro-scale interdigitated aluminium electrode fabrication for insensitive electrolyte evaluation: zeolite nanoparticle-mediated micro- to nano-scaled electrodes. Appl Phys A Mater Sci Process 125:548. https://doi.org/10.1007/s00339-019-2833-0

    Article  CAS  Google Scholar 

  11. Partel S, Kasemann S, Matylitskaya V, Thanner C, Dincer C, Urban G (2017) A simple fabrication process for disposable interdigitated electrode arrays with nanogaps for lab-on-a-chip applications. Microelectron Eng 173:27–32. https://doi.org/10.1016/j.mee.2017.03.014

    Article  CAS  Google Scholar 

  12. Alex-Amor A, Palomares-Caballero Á, Fernández-González JM, Padilla P, Marcos D, Sierra-Castañer M, Esteban J (2019) RF energy harvesting system based on an archimedean spiral antenna for low-power sensor applications. Sensors (Switzerland) 19:1318. https://doi.org/10.3390/s19061318

    Article  CAS  Google Scholar 

  13. Pecqueur S, Lenfant S, Guérin D, Alibart F, Vuillaume D (2017) Concentric-electrode organic electrochemical transistors: case study for selective hydrazine sensing. Sensors 17:570. https://doi.org/10.3390/s17030570

    Article  CAS  Google Scholar 

  14. Oommen BA, Philip J (2020) Enhanced performance of spiral co-planar inter-digital capacitive structures for sensing applications. Sens Imaging 21:1–18. https://doi.org/10.1007/s11220-020-00324-0

    Article  Google Scholar 

  15. Slaughter G (2018) Current advances in biosensor design and fabrication. In: R.A. Meyers (ed) Encyclopedia of analytical chemistry, R.A. Meyer. John Wiley & Sons, Ltd, pp. 1–25

  16. Manjakkal L, Djurdjic E, Cvejin K, Kulawik J, Zaraska K, Szwagierczak D (2015) Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors. Electrochim Acta 168:246–255. https://doi.org/10.1016/j.electacta.2015.04.048

    Article  CAS  Google Scholar 

  17. Xu J, Merlier F, Avalle B, Vieillard V, Debré P, Haupt K, Tse Sum Bui B (2019) Molecularly imprinted polymer nanoparticles as potential synthetic antibodies for immunoprotection against HIV. ACS Appl Mater Interfaces 11:9824–9831. https://doi.org/10.1021/acsami.8b22732

    Article  CAS  PubMed  Google Scholar 

  18. Rachkov A, Minoura N (2001) Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta Protein Struct Mol Enzymol 1544:255–266. https://doi.org/10.1016/S0167-4838(00)00226-0

    Article  CAS  Google Scholar 

  19. Nabavi SA, Vladisavljević GT, Eguagie EM, Li B, Georgiadou S, Manović V (2016) Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO2 molecule recognition properties. Chem Eng J 306:214–225. https://doi.org/10.1016/j.cej.2016.07.054

    Article  CAS  Google Scholar 

  20. Pichon V, Haupt K (2006) Affinity separations on molecularly imprinted polymers with special emphasis on solid-phase extraction. J Liq Chromatogr Relat Technol 29:989–1023. https://doi.org/10.1080/10826070600574739

    Article  CAS  Google Scholar 

  21. Behbahani M, Barati M, Bojdi MK, Pourali AR, Bagheri A, Tapeh NAG (2013) A nanosized cadmium(II)-imprinted polymer for use in selective trace determination of cadmium in complex matrices. Microchim Acta 30:31–35. https://doi.org/10.1007/s00604-013-1036-1

    Article  CAS  Google Scholar 

  22. Ahmad S, Ahmad S, Agnihotry SA (2007) Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull Mater Sci 30:31–35. https://doi.org/10.1007/s12034-007-0006-9

    Article  CAS  Google Scholar 

  23. Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264. https://doi.org/10.1016/j.bios.2016.08.047

    Article  CAS  PubMed  Google Scholar 

  24. Barron AR (2014) The interaction of carboxylic acids with aluminium oxides: journeying from a basic understanding of alumina nanoparticles to water treatment for industrial and humanitarian applications. Dalton Trans 43:8127–8143. https://doi.org/10.1039/C4DT00504J

    Article  CAS  PubMed  Google Scholar 

  25. Dai J, Fidalgo de Cortalezzi M (2019) Influence of pH, ionic strength and natural organic matter concentration on a MIP-fluorescent sensor for the quantification of DNT in water. Heliyon 5:e01922. https://doi.org/10.1016/j.heliyon.2019.e01922

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kremers T, Menzel N, Freitag F, Laaf D, Heine V, Elling L, Schnakenberg U (2020) Electrochemical impedance spectroscopy using interdigitated gold–polypyrrole electrode combination. Phys Status Solidi Appl Mater Sci 217:1900827. https://doi.org/10.1002/pssa.201900827

    Article  CAS  Google Scholar 

  27. Brosel-Oliu S, Abramova N, Uria N, Bratov A (2019) Impedimetric transducers based on interdigitated electrode arrays for bacterial detection – a review. Anal Chim Acta 1088:1–19. https://doi.org/10.1016/j.aca.2019.09.026

    Article  CAS  PubMed  Google Scholar 

  28. Arefin MS, Bulut Coskun M, Alan T, Redoute JM, Neild A, Rasit Yuce M (2014) A microfabricated fringing field capacitive pH sensor with an integrated readout circuit. Appl Phys Lett 104:1–5. https://doi.org/10.1063/1.4881263

    Article  CAS  Google Scholar 

  29. Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:91–98. https://doi.org/10.1016/j.bios.2020.112214

    Article  CAS  Google Scholar 

  30. Dudzinski K, Dawgul M, Pluta KD, Wawro B, Torbicz W, Pijanowska DG (2017) Spiral concentric two electrode sensor fabricated by direct writing for skin impedance measurements. IEEE Sensors J 17:5306–5314. https://doi.org/10.1109/JSEN.2017.2719001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Ministry of Education, Malaysia for providing financial support under Fundamental Research Grant Scheme [FRGS/1/2019/TK10/UNIMAP/03/3]. SCBG was supported by a special grant (9001–00596) from Universiti Malaysia Perlis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash C. B. Gopinath.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, H., Gopinath, S.C.B., Md. Arshad, M.K. et al. Molecularly imprinted polymer amalgamation on narrow-gapped Archimedean-spiral interdigitated electrodes: resistance to electrolyte fouling in acidic medium. Microchim Acta 188, 144 (2021). https://doi.org/10.1007/s00604-021-04794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04794-1

Keywords

Navigation