Skip to main content

Advertisement

Log in

Gold nanorods-based lateral flow biosensors for sensitive detection of nucleic acids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A gold nanorod (AuNR)-based lateral flow nucleic acid biosensor (LFNAB) is reported for visual detection of DNA with a short test time and high sensitivity. AuNRs with an approximate length of 60 nm were utilized as a colored tag to label the detection DNA probe (Det-DNA). The capture DNA probe (Cap-DNA) was immobilized on the test region of LFNAB. Sandwich-type complex was formed among the AuNR-Det-DNA, target DNA (Tar-DNA), and Cap-DNA on the LFNAB by Watson-Crick base pairing. In the presence of Tar-DNA, AuNRs were thus seized on the test region of LFNAB, and the accumulation of AuNRs subsequently produced a characteristic colored band. The optimized LFNAB was able to detect 10 pM Tar-DNA without instrumentation. Quantitative analysis could be established by measuring the intensity of test band using a portable strip reader, and the detection limit of 2 pM target DNA was achieved on the LFNAB without signal amplification. The detection limit of the AuNR-based LFNAB is 250-fold lower than that of gold nanoparticle (AuNP)-based LFNABs. This work unveiled a sensitive, rapid, and economical strategy for the detection of nucleic acids, and simultaneously opening new promising routes for disease diagnosis and clinical applications.

Graphical abstract

Gold nanorods are used as colored tags for lateral flow nucleic acid biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Corstjens P, Zuiderwijk M, Brink A, Li S, Feindt H, Niedbala RS, Tanke H (2001) Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin Chem 47(10):1885–1893

    Article  CAS  Google Scholar 

  2. Mao X, Xu H, Zeng Q, Zeng L, Liu G (2009) Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun 21:3065–3067

    Article  Google Scholar 

  3. Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475

    Article  CAS  Google Scholar 

  4. Qiu W, Xu H, Takalkar S, Gurung AS, Liu B, Zheng Y, Guo Z, Baloda M, Baryeh K, Liu G (2015) Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron 64:367–372

    Article  CAS  Google Scholar 

  5. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17(4):351–366

    Article  CAS  Google Scholar 

  6. Rahman M, Uddin M, Sultana R, Moue A, Setu M (2013) Polymerase chain reaction (PCR): a short review. Anwer Khan Modern Medical College Journal 4:30–36

    Article  CAS  Google Scholar 

  7. Seki Y, Fujiwara Y, Kohno T, Takai E, Sunami K, Goto Y, Horinouchi H, Kanda S, Nokihara H, Watanabe S, Ichikawa H, Yamamoto N, Kuwano K, Ohe Y (2016) Picoliter-droplet digital polymerase chain reaction-based analysis of cell-free plasma DNA to assess EGFR mutations in lung adenocarcinoma that confer resistance to tyrosine-kinase inhibitors. Oncologist 21(2):156–164

    Article  CAS  Google Scholar 

  8. Porter-Jordan K, Rosenberg EI, Keiser JF, Gross JD, Ross AM, Nasim S, Garrett CT (1990) Nested polymerase chain reaction assay for the detection of cytomegalovirus overcomes false positives caused by contamination with fragmented DNA. J Med Virol 30(2):85–91

    Article  CAS  Google Scholar 

  9. Takalkar S, Baryeh K, Liu G (2017) Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron 98:147–154

    Article  CAS  Google Scholar 

  10. Khlebtsov BN, Bratashov DN, Byzova NA, Dzantiev BB, Khlebtsov NG (2019) SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res 12(2):413–420

    Article  CAS  Google Scholar 

  11. Ren W, Mohammed SI, Wereley S, Irudayaraj J (2019) Magnetic focus lateral flow sensor for detection of cervical cancer biomarkers. Anal Chem 91(4):2876–2884

    Article  CAS  Google Scholar 

  12. Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537

    Article  CAS  Google Scholar 

  13. He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G (2010) Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem 82(17):7169–7177

    Article  CAS  Google Scholar 

  14. Hwang J, Kwon D, Lee S, Jeon S (2016) Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. RSC Adv 6(54):48445–48448

    Article  CAS  Google Scholar 

  15. Wen H-W, Borejsza-Wysocki W, DeCory TR, Durst RA (2005) Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1. Anal Bioanal Chem 382(5):1217–1226

    Article  CAS  Google Scholar 

  16. Wang J, Cao F, He S, Xia Y, Liu X, Jiang W, Yu Y, Zhang H, Chen W (2018) FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 176:444–449

    Article  CAS  Google Scholar 

  17. Gao Y, Deng X, Wen W, Zhang X, Wang S (2017) Ultrasensitive paper based nucleic acid detection realized by three-dimensional DNA-AuNPs network amplification. Biosens Bioelectron 92:529–535

    Article  CAS  Google Scholar 

  18. Peng T, Wang J, Zhao S, Zeng Y, Zheng P, Liang D, Mari GM, Jiang H (2018) Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine. Anal Chim Acta 1040:143–149

    Article  CAS  Google Scholar 

  19. He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, Zhang X, Liu G (2011) Ultrasensitive nucleic acid biosensor based on enzyme–gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26(5):2018–2024

    Article  CAS  Google Scholar 

  20. Takalkar S, Xu H, Chen J, Baryeh K, Qiu W, Zhao JX, Liu AG (2016) Gold nanoparticle coated silica nanorods for sensitive visual detection of microRNA on a lateral flow strip biosensor. Anal Sci 32(6):617–622

    Article  CAS  Google Scholar 

  21. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556

    Article  CAS  Google Scholar 

  22. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  23. Locatelli E, Monaco I, Comes Franchini M (2015) Surface modifications of gold nanorods for applications in nanomedicine. RSC Adv 5(28):21681–21699

    Article  CAS  Google Scholar 

  24. Xu L, Kuang H, Wang L, Xu C (2011) Gold nanorod ensembles as artificial molecules for applications in sensors. J Mater Chem 21(42):16759–16782

    Article  CAS  Google Scholar 

  25. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871

    Article  CAS  Google Scholar 

  26. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579

    Article  CAS  Google Scholar 

  27. Hao K, He Y, Lu H, Pu S, Zhang Y, Dong H, Zhang X (2017) High-sensitive surface plasmon resonance microRNA biosensor based on streptavidin functionalized gold nanorods-assisted signal amplification. Anal Chim Acta 954:114–120

    Article  CAS  Google Scholar 

  28. Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, Wang X, Zhan L (2016) A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun 52(20):3959–3961

    Article  CAS  Google Scholar 

  29. Zhu W, Xuan C, Liu G, Chen Z, Wang W (2015) A label-free fluorescent biosensor for determination of bovine serum albumin and calf thymus DNA based on gold nanorods coated with acridine orange-loaded mesoporous silica. Sensors Actuators B Chem 220:302–308

    Article  CAS  Google Scholar 

  30. Li C-Z, Male KB, Hrapovic S, Luong JHT (2005) Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun 31:3924–3926

    Article  Google Scholar 

  31. Shakoori Z, Salimian S, Kharrazi S, Adabi M, Saber R (2015) Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Anal Bioanal Chem 407(2):455–461

    Article  CAS  Google Scholar 

  32. Xu C, Lan L, Yao Y, Ping J, Li Y, Ying Y (2018) An unmodified gold nanorods-based DNA colorimetric biosensor with enzyme-free hybridization chain reaction amplification. Sensors Actuators B Chem 273:642–648

    Article  CAS  Google Scholar 

  33. Tao Y, Yang J, Chen L, Huang Y, Qiu B, Guo L, Lin Z (2018) Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Microchimica Acta 185(7):350

    Article  Google Scholar 

  34. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  35. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20(15):6414–6420

    Article  CAS  Google Scholar 

  36. Vigderman L, Zubarev ER (2013) High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater 25(8):1450–1457

    Article  CAS  Google Scholar 

  37. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668

    Article  CAS  Google Scholar 

  38. Baeumner AJ, Pretz J, Fang S (2004) A universal nucleic acid sequence biosensor with nanomolar detection limits. Anal Chem 76(4):888–894

    Article  CAS  Google Scholar 

  39. Gao X, Xu H, Baloda M, Gurung AS, Xu L-P, Wang T, Zhang X, Liu G (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584

    Article  CAS  Google Scholar 

Download references

Funding

This study received funding from the Natural Science Foundation of Anhui province (Nos. 1808085QH264, 1908085MB54), Key Research and Development Projects of Anhui Province (No. 202004a07020018), Major project of Anhui Provincial Department of Education (No. KJ2019ZD58), and Wanjiang Scholar Award of Anhui Province, National Natural Science Foundation of China (Nos. 31700735, 21890740, 21890742, 21727815). Projects of Anhui Science and Technology University for Talent introduction (SKYJ201903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisheng Qian, Xueji Zhang or Guodong Liu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Zhang, J., Qiu, W. et al. Gold nanorods-based lateral flow biosensors for sensitive detection of nucleic acids. Microchim Acta 188, 133 (2021). https://doi.org/10.1007/s00604-021-04788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04788-z

Keywords

Navigation