Skip to main content
Log in

Rapid and simple colorimetric detection of hydrogen sulfide using an etching-resistant effect on silver nanoprisms

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fast and sensitive colorimetric paper sensor has been developed using silver nanoprisms (Ag NPRs) with an edge length of ~50 nm for the detection of free H2S gas. We prepared two types of Ag NPRs-coated H2S sensing papers: a multi-zone patterned paper for passive (diffusion mode), and a single-zone patterned paper for pumped mode of H2S gas. The change in color intensity was quantitatively analyzed of Ag NPRs-coated paper after KCl treatment depending on the concentration of H2S gas, from yellow to purplish brown. As a result, Ag NPRs-coated H2S sensing paper showed good sensitivity with a linear range of 1.03 to 32.9 μM H2S, high selectivity, and good reproducibility and stability, together with a fast response time of 1 min. The developed H2S sensing paper was applied to detect the free H2S gas released from three types of garlic including crushed, peeled, and fresh garlic. Therefore, it can be utilized as a simple, fast, and reliable tool for on-site colorimetric detection of free H2S gas for quality control of dietary supplements and exhaled breath analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Powell CR, Dillon KM, Matson JB (2018) A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol 149:110–123. https://doi.org/10.1016/j.bcp.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  2. Policastro MA, Otten EJ (2007) Case files of the University of Cincinnati fellowship in medical toxicology: two patients with acute lethal occupational exposure to hydrogen sulfide. J Med Toxicol 3:73–81. https://doi.org/10.1007/BF03160912

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30:76–80. https://doi.org/10.4103/0256-4947.59379

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590. https://doi.org/10.1126/science.1162667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jin S, Pu SX, Hou CL, Ma FF, Li N, Li XH, Tan B, Tao BB, Wang MJ, Zhu YC (2015) Cardiac H2S generation is reduced in ageing diabetic mice. Oxidative Med Cell Longev 2015:758358–758314. https://doi.org/10.1155/2015/758358

    Article  Google Scholar 

  7. Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488. https://doi.org/10.1016/S0006-291X(02)00422-9

    Article  CAS  PubMed  Google Scholar 

  8. Florin THJ, Neale G, Goretski S, Cummings JH (1993) The sulfate content of foods and beverages. J Food Compos Anal 6:140–151. https://doi.org/10.1006/jfca.1993.1016

    Article  CAS  Google Scholar 

  9. Banik GD, De A, Som S, Jana S, Daschakraborty SB, Chaudhuri S et al (2016) Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J Breath Res 10:026010. https://doi.org/10.1088/1752-7155/10/2/026010

    Article  CAS  PubMed  Google Scholar 

  10. Aylikci BU, Çolak H (2013) Halitosis: from diagnosis to management. J Nat Sci Biol Med 4:14–23. https://doi.org/10.4103/0976-9668.107255

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xu T, Scafa N, Xu LP, Zhou S, Abdullah Al-Ghanem K, Mahboob S et al (2016) Electrochemical hydrogen sulfide biosensors. Analyst 141:1185–1195. https://doi.org/10.1039/c5an02208h

    Article  CAS  PubMed  Google Scholar 

  12. Ding Y, Li X, Chen C, Ling J, Li W, Guo Y, Yan J, Zha L, Cai J (2017) A rapid evaluation of acute hydrogen sulfide poisoning in blood based on DNA-cu/ag nanocluster fluorescence probe. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-09960-1

    Article  Google Scholar 

  13. Lewis A (2010) Review of metal sulfide precipitation. Hydrometallurgy 104:222–234. https://doi.org/10.1016/j.hydromet.2010.06.010

    Article  CAS  Google Scholar 

  14. Olson KR (2012) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44. https://doi.org/10.1089/ars.2011.4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG (2011) Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic Biol Med 50:1021–1031. https://doi.org/10.1016/j.freeradbiomed.2011.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaushik R, Ghosh A, Singh A, Jose DA (2018) Colorimetric sensor for the detection of H2S and its application in molecular half-subtractor. Anal Chim Acta 1040:177–186. https://doi.org/10.1016/j.aca.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Wu X, Yang S, Tian H, Liu Y, Sun B (2019) A visible colorimetric fluorescent probe for hydrogen sulfide detection in wine. Food Chem 286:322–328. https://doi.org/10.1016/j.foodchem.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  18. Lee BH, Hsu MS, Hsu YC, Lo CW, Huang CL (2010) A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths. J Phys Chem 114:6222–6227. https://doi.org/10.1021/jp910100k

    Article  CAS  Google Scholar 

  19. Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver manoplates: is citrate a “magic” reagent? J Am Chem Soc 133:18931–18939. https://doi.org/10.1021/ja2080345

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Zhang C, Wu Q, Li K, Tan L (2015) Application of triangular silver nanoplates for colorimetric detection of H2O2. Sens Actuator B-Chem 220:314–317. https://doi.org/10.1016/j.snb.2015.05.085

    Article  CAS  Google Scholar 

  21. Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367. https://doi.org/10.1021/jp806486f

    Article  CAS  Google Scholar 

  22. Zhang Q, Ge J, Pham T, Goebl J, Hu Y, Lu Z, Yin Y (2009) Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed Engl 48:3516–3519. https://doi.org/10.1002/anie.200900545

    Article  CAS  PubMed  Google Scholar 

  23. Zhang P, Wang L, Zeng J, Tan J, Long Y, Wang Y (2020) Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Microchim Acta 187:107. https://doi.org/10.1007/s00604-019-4071-8

    Article  CAS  Google Scholar 

  24. Li Y, Li Z, Gao Y, Gong A, Zhang Y, Hosmane NS et al (2014) “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale 21:10631–10637. https://doi.org/10.1039/c4nr0..09d

    Article  Google Scholar 

  25. Aherne D, Deirdre DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver naniprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18:2005–2016. https://doi.org/10.1002/adfm.200800233

    Article  CAS  Google Scholar 

  26. Lee J, Lee YJ, Ahn YJ, Choi S, Lee GJ (2018) A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. Sens Actuator B-Chem 256:828–834. https://doi.org/10.1016/j.snb.2017.10.019

    Article  CAS  Google Scholar 

  27. Ahn YJ, Gil YG, Lee YJ, Jang H, Lee GJ (2020) A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. Microchem J 155:104724. https://doi.org/10.1016/j.microc.2020.104724

    Article  CAS  Google Scholar 

  28. Gu Y, Kong S, Diao X, Guo Y, Zhang K, He H (2016) Mechanistic study on the facet etching effect of silver nanoprisms in the presence of halide ions and their application in the colorimetric sensing of metformin hydrochloride. New J Chem 40:7557–7563. https://doi.org/10.1039/c6nj00361c

    Article  CAS  Google Scholar 

  29. Yang Y, Zhong XL, Zhang Q, Blackstad LG, Fu ZW, Li ZY, Qin D (2014) The role of etching in the formation of ag nanoplates with straight, curved and wavy edges and comparison of their SERS properties. Small 10:1430–1437. https://doi.org/10.1002/smll.201302877

    Article  CAS  PubMed  Google Scholar 

  30. Zeng J, Tao J, Su D, Zhu Y, Qin D, Xia Y (2011) Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape. Nano Lett 11:3010–3015. https://doi.org/10.1021/nl2016448

    Article  CAS  PubMed  Google Scholar 

  31. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trac-Trends Anal Chem 23:535–552. https://doi.org/10.1016/j.trac.2004.04.001

    Article  CAS  Google Scholar 

  32. Mironov A, Seregina T, Nagornykh M, Luhachack LG, Korolkova N, Lopes LE, Kotova V, Zavilgelsky G, Shakulov R, Shatalin K, Nudler E (2017) Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli. Proc Natl Acad Sci U S A 114:6022–6027. https://doi.org/10.1073/pnas.1703576114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Benavides GA, Squadrito GL, Mills RW, Patel HD, Scott Isbell T, Patel RP et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977–17982. https://doi.org/10.1073/pnas.0705710104

    Article  PubMed  PubMed Central  Google Scholar 

  34. Banerjee SK, Maulik SK (2002) Effect of garlic on cardiovascular disorders: a review. Nutr J 1:4. https://doi.org/10.1186/1475-2891-1-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation grant funded by the Korean government (No. NRF-2018R1A2B6007635) and the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0023, 9991006696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Ja Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y.J., Han, S.H. & Lee, GJ. Rapid and simple colorimetric detection of hydrogen sulfide using an etching-resistant effect on silver nanoprisms. Microchim Acta 188, 129 (2021). https://doi.org/10.1007/s00604-021-04783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04783-4

Keywords

Navigation