Skip to main content
Log in

Visual detection of multiple antioxidants based on three chloroauric acid/Au-Ag nanocubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric sensing method is described for discrimination of multiple antioxidants based on core-shell Au@Ag nanocubes (NCs). In order to extract data-rich colorimetric responses from the sensor array, three different concentrations of chloroaurate acid (HAuCl4) were employed as sensing elements. Interestingly, Au3+ ions can be reduced to different valence states (i.e., Au(0) and Au(I)) by different antioxidants, and thus effectively inhibit the oxidation etching process of Au@Ag NCs by Au(III) ions to varying extents, generating diverse colorimetric responses (color and absorbance). This enables identification of the six antioxidants at 10 nM via linear discriminant analysis (LDA) with relative standard deviation (RSD) of 2.52% (n = 3). The discrimination ability of the sensor array was further evaluated in antioxidant binary and multicomponent mixtures. Remarkably, identification of these six antioxidants spiked in urine was realized with 100% of accuracy.

Graphical abstract

Schematic presentation of colorimetric assay for antioxidants based on three chloroauric acid/Au-Ag nanocubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Czerniak AS, Tulodziecka A, Szlyk E (2012) A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst 137:3750–3759

    Article  Google Scholar 

  2. Barberis A, Spissu Y, Bazzu G, Fadda A, Azara E, Sanna D, Schirra M, Serra PA (2014) Development and characterization of an ascorbate oxidase-based sensor-biosensor system for telemetric detection of AA and antioxidant capacity in fresh orange juice. Anal Chem 86:8727–8734

    Article  CAS  Google Scholar 

  3. Botterweck AAM, Verhagen H, Goldbohm RA, Kleinjans J, van den Brandt PA (2000) Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food Chem Toxicol 38:599–605

    Article  CAS  Google Scholar 

  4. Li H, Lin H, Wang X, Lv W, Li F (2019) Dopamine-based paper analytical device for truly equipment-free and naked-eye biosensing based on the target-initiated catalyzed oxidation. ACS Appl Mater Interfaces 11:36469–36475

    Article  CAS  Google Scholar 

  5. Piyanan T, Athipornchai A, Henry CS, Sameenoi Y (2018) An instrument-free detection of antioxidant activity using paper-based analytical devices coated with nanoceria. Anal Sci 34:97–102

    Article  CAS  Google Scholar 

  6. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  7. Alcalde B, Granados M, Saurina J (2019) Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods. Antioxidants 8:523

    Article  CAS  Google Scholar 

  8. Aaby K, Hvattum E, Skrede G (2004) Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J Agric Food Chem 52:4595–4603

    Article  CAS  Google Scholar 

  9. Bean H, Radu F, De E, Schuler C, Leggett RE, Levin RM (2008) Comparative evaluation of antioxidant reactivity within obstructed and control rabbit urinary bladder tissue using FRAP and CUPRAC assays. Mol Cell Biochem 323:139–142

    Article  Google Scholar 

  10. Özyürek M, Güçlü K, Tütem E, Başkan KS, Erçağ E, Çelik SE, Apak R (2011) A comprehensive review of CUPRAC methodology. Anal Methods 3:2439–2453

    Article  Google Scholar 

  11. Baiano A, Terracone C, Gambacorta G, Notte EL (2009) Phenolic content and antioxidant activity of primitivo wine: comparison among winemaking technologies. J Food Sci 74:258–267

    Article  Google Scholar 

  12. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  13. Leeuw RV, Kevers C, Pincemail J, Defraigne J, Dommes J (2014) Antioxidant capacity and phenolic composition of red wines from various grape varieties: specificity of pinot noir. J Food Compos Anal 36:40–50

    Article  Google Scholar 

  14. Rivero-Pérez MD, González-Sanjosé ML, Ortega-Herás M, Muñiz P (2008) Antioxidant potential of single-variety red wines aged in the barrel and in the bottle. Food Chem 111:957–964

    Article  Google Scholar 

  15. Canabady-Rochelle LL, Harscoat-Schiavo C, Kessler V, Aymes A, Fournier F, Girardet J (2015) Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chem 183:129–135

    Article  CAS  Google Scholar 

  16. Chakraborty D, Venkatesan M, Ethiraj KR, Chandrasekaran N, Mukherjee A (2020) Development of thickness-tunable gold nanorods for anti-oxidant detection. Mater Chem Phys 239:122295

    Article  CAS  Google Scholar 

  17. Scroccarello A, Pelle FD, Fratini E, Ferraro G, Compagnone D (2020) Colorimetric determination of polyphenols via a gold nanoseeds-decorated polydopamine film. Microchim Acta 187:267

    Article  CAS  Google Scholar 

  18. Vilela D, Gonzalez MC, Escarpa A (2015) Nanoparticles as analytical tools for in-vitro antioxidant-capacity assessment and beyond. TrAC Trend Anal Chem 64:1–16

    Article  CAS  Google Scholar 

  19. Huang W, Seehafer K, Bunz UH (2019) Discrimination of flavonoids by a hypothesis free sensor array. ACS Appl Polym Mater 1:1301–1307

    Article  CAS  Google Scholar 

  20. Ko J, Bhagwat N, Yee SS, Ortiz N, Sahmoud A, Black T, Aiello NM, McKenzie L, O’Hara M, Redlinger C, Romeo J, Carpenter EL, Stanger BZ, Issadore D (2017) Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano 11:11182–11193

    Article  CAS  Google Scholar 

  21. You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol 2:318–323

    Article  CAS  Google Scholar 

  22. Zhang C, Li LW, Liu QY, Chen ZB (2020) Colorimetric differentiation of multiple oxidizing anions based on two core-shell Au@Ag nanoparticles with different morphologies as array recognition elements. Anal Chem 92:7123–7129

    Article  CAS  Google Scholar 

  23. Liu B, Chen Y, Zhang MQ, Chen ZB, Zuo X (2020) Colorimetric discriminatory array for detection and discrimination of antioxidants based on HAuCl4/3,3′,5,5′-tetramethylbenzidine. Analyst 145:5221–5225

    Article  CAS  Google Scholar 

  24. Zhang X, Chen ZB, Zuo X (2020) Chloroauric acid/silver nanoparticle colorimetric sensors for antioxidant discrimination based on a honeycomb Ag-Au nanostructure. ACS Sustain Chem Eng 8(9):3922–3928

    Article  CAS  Google Scholar 

  25. Ma YY, Li WY, Cho EC, Li ZY, Yu T, Zeng J, Xie ZX, Xia YN (2010) Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4:6725–6734

    Article  CAS  Google Scholar 

  26. Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100:2649–2678

    Article  CAS  Google Scholar 

  27. Li X, Li SQ, Liu QY, Cui ZQ, Chen ZB (2019) A triple-channel colorimetric sensor array for identification of biothiols based on color RGB (red/green/blue) as signal readout. ACS Sustain Chem Eng 7:17482–17490

    Article  CAS  Google Scholar 

  28. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M (2015) A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal Chim Acta 882:58–67

    Article  CAS  Google Scholar 

  29. Abbasi-Moayed S, Golmohammadi H, Bigdeli A, Hormozi-Nezhad MR (2018) A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Analyst 143:3415–3424

    Article  CAS  Google Scholar 

  30. Xi HY, Li X, Liu QY, Chen ZB (2019) Fluorescent sensor array for discrimination of biothiols based on poly(thymine/cytosine)-templated copper nanoparticles. Anal Chim Acta 1051:147–152

    Article  CAS  Google Scholar 

  31. Jing WJ, Cui XK, Kong FB, Wei W, Li YC, Fan LZ, Li XH (2021) Fe-N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst 146:207–212

  32. Huang W, Xie ZY, Deng YQ, He Y (2018) 3,3′,5,5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sens Actuators B: Chem 254:1057–1060

Download references

Funding

All authors received financial support from the Natural Science Foundation of China (Grant No. 21801215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Zhengbo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A colorimetric sensor array for the discrimination of multiple antioxidants based on three chloroauric acid/Au-Ag nanocube sensors

Supplementary information

ESM 1

(DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, S., Yu, X. et al. Visual detection of multiple antioxidants based on three chloroauric acid/Au-Ag nanocubes. Microchim Acta 188, 122 (2021). https://doi.org/10.1007/s00604-021-04774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04774-5

Keywords

Navigation