Skip to main content
Log in

Highly sensitive colorimetric determination of nitrite based on the selective etching of concave gold nanocubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Concave gold nanocubes are viable optical nanoprobes for the determination of nitrite ions. Herein, a novel approach was developed, based on the measurement of localized surface plasmon resonance absorption. The addition of nitrite ions selectively induced the etching of concave gold nanocubes, abrading the sharp vertices to spherical corners, which resulted in blue-shifted absorption accompanied by a color change from sapphire blue to light violet. The mechanism of selective etching of concave gold nanocube tips was elucidated by using X-ray photoelectron spectroscopy and atom probe tomography. The optimized detection of NO2 via the concave gold nanocube-based probe occurred at pH 3.0 and in 20 mM NaCl concentration at 40 °C. The absorption ratios (A550 nm/A640 nm) were proportional to the NO2 concentrations in the range 0.0–30 μM, with a detection limit of 38 nM (limit of quantitation of 0.12 μM and precision of 2.7%) in tap water. The highly selective and sensitive colorimetric assay has been successfully applied to monitor the nitrite ion concentrations in spiked tap water, pond water, commercial ham, and sausage samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xia X, Zhang S, Li S, Zhang L, Wang G, Zhang L, Wang J, Li Z (2018) The cycle of nitrogen in river systems: sources, transformation, and flux. Environ Sci Processes Impacts 20:863–891

    Article  CAS  Google Scholar 

  2. Sidhu PK, Mahajan V, Verma S, Ashuma GMP (2014) Toxicological and pathological review of concurrent occurrence of nitrite toxicity and swine fever in pigs. Toxicol Int 21:186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chellapandi P, Prisilla A (2018) Clostridium botulinum type A-virulome-gut interactions: a systems biology insight. Hum Microbiome J 7–8:15–22

    Article  Google Scholar 

  4. Karwowska M, Kononiuk A (2020) Nitrates/nitrites in food-risk for nitrosative stress and benefits. Antioxidants 9:241

    Article  CAS  PubMed Central  Google Scholar 

  5. Parvizishad M, Dalvand A, Mahvi AH, Goodarzi F (2017) A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Environ Health Scope 6:e14164

    Google Scholar 

  6. Erzsebet F, Ibolya F, Emanuela M, Dumitru CM (2016) Presence of nitrate and nitrite in well water in Wureș county. Acta Med Marisiensis 62:78–81

    Article  CAS  Google Scholar 

  7. Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, Villanueva CM, van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15:1557

    Article  PubMed Central  Google Scholar 

  8. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Acessed 01 Dec 2020

  9. Chamandust S, Mehrasebi MR, Kamali K, Solgi R, Taran J, Nazari F, Hosseini MJ (2016) Simultaneous determination of nitrite and nitrate in milk samples by ion chromatography method and estimation of dietary intake. Int J Food Prop 19:1983–1993

    Article  CAS  Google Scholar 

  10. Moreno CL, Perez IV, Urbano AM (2016) Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem 194:687–694

    Article  Google Scholar 

  11. Zhao J, Wang J, Yang Y, Lu Y (2015) The determination of nitrate and nitrite in human urine and blood by high-performance liquid chromatography and cloud-point extraction. J Chromatogr Sci 53:1169–1177

    Article  CAS  PubMed  Google Scholar 

  12. Wang XF, Fan JC, Ren R, Jin Q, Wang J (2016) Rapid determination of nitrite in foods in acidic conditions by high-performance liquid chromatography with fluorescence detection. J Sep Sci 39:2263–2269

    Article  CAS  PubMed  Google Scholar 

  13. Tatarczak-Michalewska M, Flieger J, Kawka J, Płaziński W, Flieger W, Blicharska E, Majerek D (2019) HPLC-DAD determination of nitrite and nitrate in human saliva utilizing a phosphatidylcholine column. Molecules 24:1754

    Article  CAS  PubMed Central  Google Scholar 

  14. Zinke M, Hanff E, Bohmer A, Supuran CT, Tsikas D (2016) Discovery and microassay of a nitrite-dependent carbonic anhydrase activity by stable-isotope dilution gas chromatography-mass spectrometry. Amino Acids 48:245–255

    Article  CAS  PubMed  Google Scholar 

  15. Campanella B, Onor M, Pagliano E (2017) Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry. Anal Chim Acta 980:33–40

    Article  CAS  PubMed  Google Scholar 

  16. Luckovitch N, Pagliano E (2020) A reference isotope dilution headspace GC/MS method for the determination of nitrite and nitrate in meat samples. J Food Sci Technol 55:1110–1118

    Article  CAS  Google Scholar 

  17. Zheng XJ, Liang RP, Li ZJ, Zhang L, Qiu JD (2016) One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sens Actuators B Chem 230:314–319

    Article  CAS  Google Scholar 

  18. Gu B, Huang L, Hu J, Liu J, Su W, Duan X, Li H, Yao S (2016) Highly selective and sensitive fluorescent probe for the detection of nitrite. Talanta 152:155–161

    Article  CAS  PubMed  Google Scholar 

  19. Cai M, Chai X, Wang X, Wang T (2017) An acid-inert fluorescent probe for the detection of nitrite. J Fluoresc 27:1365–1371

    Article  CAS  PubMed  Google Scholar 

  20. Xu Z, Shi W, Yang C, Xu J, Liu H, Xu J, Zhu B (2020) A colorimetric fluorescent probe for rapid and specific detection of nitrite. Luminescence 35:299–304

    Article  CAS  PubMed  Google Scholar 

  21. Kumar VV, Anthony SP (2014) Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions. Anal Chim Acta 842:57–62

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim MH, Xue Z, Abdu HI, Shinger MI, Idris AM, Edris MM, Shan D, Lu X (2019) Sensitive and selective colorimetric nitrite ion assay using silver nanoparticles easily synthesized and stabilized by AHNDMS and functionalized with PABA. Nanoscale Adv 1:1207–1214

    Article  CAS  Google Scholar 

  23. Xiong Y, Li M, Liu H, Xuan Z, Yang J, Liu D (2017) Janus PEGylated gold nanoparticles: a robust colorimetric probe for sensing nitrite ions in complex samples. Nanoscale 9:1811–1815

    Article  CAS  PubMed  Google Scholar 

  24. Ye Y, Guo Y, Yue Y, Zhang Y (2015) Facile colorimetric detection of nitrite based on anti-aggregation of gold nanoparticles. Anal Methods 7:4090–4096

    Article  CAS  Google Scholar 

  25. Nam YS, Noh KC, Kim NK, Lee Y, Park HK, Lee KB (2014) Sensitive and selective determination of NO2− ion in aqueous samples using modified gold nanoparticle as a colorimetric probe. Talanta 125:153–158

    Article  PubMed  Google Scholar 

  26. Wali LA, Hasan KK, Alwan AA (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim. Acta A 206:31–36

    Article  CAS  Google Scholar 

  27. Wali LA, Hasan KK, Alwan AA (2020) An investigation of efficient detection of ultra-low concentration of penicillins in milk using AuNPs/PSi hybrid structure. Plasmonics 15:985–993

    Article  CAS  Google Scholar 

  28. Amanulla B, Palanisamy S, Chen SM, Chiu TW, Velusamy V, Hall JM, Chen TW, Ramaraj SK Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci Rep 7:14182

  29. Li T, Li Y, Zhang Y, Dong C, Shen Z, Wu A (2015) A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles. Analyst 140:1076–1081

    Article  CAS  PubMed  Google Scholar 

  30. Chen Z, Zhang Z, Qu C, Pan D, Chen L (2012) Highly sensitive label-free colorimetric sensing of nitrite based on etching of gold nanorods. Analyst 137:5197–5200

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132:14012–14014

    Article  CAS  PubMed  Google Scholar 

  32. Omar R, En Naciri A, Jradi S, Battie Y, Toufaily J, Mortada H, Akil S (2017) One-step synthesis of monolayer of monodisperse gold nanocubes for SERS substrates. J Mater Chem C 5:10813–10821

    Article  CAS  Google Scholar 

  33. Pereira EA, Petruci JFS, Cardoso AA (2012) Determination of nitrite and nitrate in Brazilian meats using high shear homogenization. Food Anal Methods 5:637–642

    Article  Google Scholar 

  34. Zhang H, Qi S, Dong Y, Chen X, Xu Y, Ma Y, Chen X (2014) A sensitive colorimetric method for the determination of nitrite in water supplies, meat and dairy products using ionic liquid-modified methyl red as a color reagent. Food Chem 151:429–434

    Article  CAS  PubMed  Google Scholar 

  35. Park JW, Parry JSS (2014) Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc 136:1907–1921

    Article  CAS  PubMed  Google Scholar 

  36. Mandal D, Mondal S, Senapati D, Satpati B, Sangaranarayanan MV (2015) Charge density modulated shape-dependent electrocatalytic activity of gold nanoparticles for the oxidation of ascorbic acid. J Phys Chem C 119:23103–23112

    Article  CAS  Google Scholar 

  37. Alam MS, Siddiq AM, Narayanan SS, Samanta D, Das SK (2015) Cationic surfactant (CTAC) assistedsynthesis of silver nanoparticles with controlled size: optical, morphological and bactericidal studies. J Nanoeng Nanomanf 5:124–131

    Article  CAS  Google Scholar 

  38. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Duyne RPV (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114:12511–12516

    Article  CAS  Google Scholar 

  39. Wang Z, Yang G, Zhang Z, Jin M, Yin Y (2016) Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 10:4559–4564

    Article  CAS  PubMed  Google Scholar 

  40. Klyushin AY, Rocha TCR, Hävecker M, Knop-Gericke A, Schlögl R (2014) A near ambient pressure XPS study of Au oxidation. Phys Chem Chem Phys 16:7881–7886

    Article  CAS  PubMed  Google Scholar 

  41. Kang F, Qu X, Alvarez PJJ, Zhu D (2017) Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: new insights for heavy metals biomineralization on microbial surfaces. Environ Sci Technol 51:2776–2785

    Article  CAS  PubMed  Google Scholar 

  42. Gault B (2016) A brief overview of atom probe tomography research. Appl Microsc 46:117–126

    Article  Google Scholar 

  43. Reddy SM, Saxey DW, Rickard WDA, Fougerouse D, Montalvo SD, Verberne R, Av R (2020) Atom probe tomography: development and application to the geosciences. Geostand Geoanal Res 44:5–50

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Korea Institute of Science and Technology (2E31283 and 2E31380).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeonhee Lee or Kang-Bong Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, SJ., Nam, YS., Lee, J.Y. et al. Highly sensitive colorimetric determination of nitrite based on the selective etching of concave gold nanocubes. Microchim Acta 188, 132 (2021). https://doi.org/10.1007/s00604-021-04772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04772-7

Keywords

Navigation